Александра Кирсанова - Использование Data mining..
1. Использование Data mining в коммуникациях с клиентами в эпоху персонального маркетинга Кирсанова А.В.
2. МАРКЕТИНГ, ПРОГРАММЫ ЛОЯЛЬНОСТИ И СОВРЕМЕННЫЕ МЕТОДЫ АНАЛИЗА В современном маркетинге и системах лояльности наряду с первичной информацией о клиентах (анкетные данные, чеки) используются данные, полученные в результате использования математических и статистических методов Кирсанова А.В.
3. Одна из технологий анализа данных Автоматический поиск скрытых общих закономерностей в больших наборах данных Использование методов и алгоритмов статистики, распознавания образов, машинного обучения, искусственного интеллекта Data Mining = Извлечение знаний BASKET ANALYSIS СОСТАВЛЕНИЕ ПРОФИЛЯ КЛИЕНТА САМЫЕ РАСПРОСТРАНЕННЫЕ ЗАДАЧИ, КОТОРЫЕ РЕШАЮТСЯ С ПОМОЩЬЮ DATA MINING: ЧТО ТАКОЕ DATA MINING ? Кирсанова А.В.
4. ЗАДАЧА №1 ДАНО: ИЗБЫТОЧНАЯ ЗАКУПКА В 10 000 ШТ. КНИЖЕК СО СКАЗКАМИ ДЛЯ МАЛЫШЕЙ БИЗНЕС-ПРОБЛЕМА — — РЕАЛИЗОВАТЬ ЦЕЛЕВОЙ ТОВАР Кирсанова А.В.
5. ПОИСК АССОЦИАЦИЙ С ПОМОЩЬЮ DATA MINER Кирсанова А.В. Support -- Насколько часто встречаются товары (A — > B) = P(AB) Confidence: -- как часто товар B сопутствует товару A (A —> B) = P(AB)/P(A) Длина правила - кол-во товаров в правиле AB —> C Длина правила = 3 ПОДДЕРЖКА ДОСТОВЕРНОСТИ ДОПОЛНИТЕЛЬНЫЕ ПАРАМЕТРЫ: Период между покупками Анкетные данные клиента Ограниченный бюджет на рассылку – история откликов Ограничение откликов Др. РЕШЕНИЕ
6. АССОЦИАТИВНЫЕ ПРАВИЛА: КУБИКИ МИШКА РЕЗИНОВЫЕ УТЯТА ЕСЛИ ТО ПАРОВОЗИК ЛЕГО СКАЗКИ ДАННЫЕ О ПОКУПКАХ Чеки за выбранный период КЛИЕНТ ДАТА КУБИКИ ЛЕГО СКАЗКИ КУКЛА 1 2 3 4 01.11.2010 01.11.2010 01.11.2010 01.11.2010 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 Кирсанова А.В. ПРОСМОТР РЕЗУЛЬТАТОВ НАСТРОЙКА ФИЛЬТРОВ И УПОРЯДОЧИВАНИЕ ПОРОГОВ
7. Кирсанова А.В. ПРИМЕНЕНИЕ МОДЕЛИ Максимальная отдача от коммуникации Контроль бюджета Формирование предложения Тест (если это возможно) Анализ Применение модели или повторный тест Анализ 8,6 1,3
9. ПОСТРОЕНИЕ КЛАССИФИКАЦИОННОЙ МОДЕЛИ ДЛЯ ПРОГНОЗИРОВАНИЯ ОТТОКА МОДЕЛЬ Строится модель P(Y) = F(X1, X2, , Xm) Модель по прогнозным атрибутам вычисляет вероятность того, что Y=1 (отток) Модель «настроена» на исторические данные Исторические данные о клиентах за предыдущие периоды Клиенты ФИО ОБЪЕМ ПОКУПОК СЫН ДОЧЬ ВНУКИ 100,000 55,000 215,000 50,000 70,000 Х2 Григорьева Глаголев Попов Горбунова Рындин Х1 0 2 2 2 1 1 0 1 0 0 2 0 0 0 0 Х m 1 0 0 1 1 Y …… . На основе исторической информации о клиентах и их покупках за предыдущий квартал од …. строится статистическая модель, которая по параметрам клиента определяет его активность (вычисляет вероятность того, что клиент существенно снизит активность). Кирсанова А.В. РЕШЕНИЕ
10. ДАННЫЕ О КЛИЕНТАХ СОБИРАЮТСЯ ИЗ ДВУХ ИСТОЧНИКОВ ДАННЫЕ ИЗ АНКЕТ ДАННЫЕ О ПОКУПКАХ (ВЫЧИСЛЯЮТСЯ НА ОСНОВЕ ЧЕКОВ) Кирсанова А.В.
11. ШАГИ Кирсанова А.В. НАСТРОЙКА ПАРАМЕТРОВ МОДЕЛЕЙ ПОСТРОЕНИЕ КЛАССИФИКАЦИОННЫХ МОДЕЛЕЙ ОТТОКА ПРОСМОТР МОДЕЛЕЙ И РЕЗУЛЬТАТОВ ТЕСТИРОВАНИЯ Просмотр отдельных моделей Результаты тестирования каждой модели Сравнение моделей по эффективности, точности, прибыльности
12. МОДЕЛЬ Модель применяется к новым данным Для каждого клиента вычисляются значение и вероятность оттока Исторические данные о клиентах за предыдущие периоды Клиенты ФИО объем покупок сын дочь внуки отток? вероятность 20,000 70,000 300,000 50,000 70,000 Х2 Алексеев Звездный Кустова Ямкин Чалая Х1 2 2 0 2 1 0 1 0 0 0 0 0 2 0 0 Х m ? Прогнозирующие атрибуты …… . Целевой атрибут Y Кирсанова А.В. ПРИМЕНЕНИЕ МОДЕЛЕЙ К НОВЫМ ДАННЫМ
13. Исторические данные о клиентах за предыдущие периоды Клиенты ФИО объем покупок сын дочь внуки отток? вероятность 20,000 70,000 300,000 50,000 70,000 Х2 Алексеев Звездный Кустова Ямкин Чалая Х1 2 2 0 2 1 0 1 0 0 0 0 0 2 0 0 Х m Прогнозирующие атрибуты …… . Целевой атрибут Y 1 1 1 0 0 0.95 0.89 0.87 0.97 0.95 Модель применяется к данным о клиентах за последние 3 месяцаолгода…. Результат –для каждого клиента будет вычислена вероятность оттока (вероятность того, что клиент не будет покупать товары) Кирсанова А.В. ПРОСМОТР РЕЗУЛЬТАТОВ ПРИМЕНЕНИЯ МОДЕЛИ МОДЕЛЬ Модель применяется к новым данным Для каждого клиента вычисляются значение и вероятность оттока
14. ИСПОЛЬЗОВАНИЕ ФОРМИРОВАНИЕ ВЫСОКО-ТАРГЕТИРОВАННЫХ КАМПАНИЙ КОММУНИКАЦИЯ Кирсанова А.В. Формирование предложения для сегментов клиентов Тест (если это возможно) Анализ Применение модели или повторный тест Анализ
1. С помощью алгоритма поиска ассоциативных правил автоматически генерируются правила вида «если чек содержит продукт А , то с достоверностью P он содержит и продукт B ». Для кросс-продаж, размещения товаров в торговых залах, формирования специальных предложений 2. Исходные данные – информация о клиентах (данные о покупках, результаты маркетинговых мероприятий) Автоматически выявляются общие характеристики, присущие определенной группе клиентов и отличающие ее от остальных клиентов Например, формирование профиля прибыльного клиента Общие области применения: Анализ покупательской корзины Выявление сопутствующих товаров на основе анализа чеков, Формирование новых предложений, пакетов Анализ и сегментация клиентской базы Построение профиля высокодоходных клиентов Удержание клиентов, привлечение клиентов Кросс-продажи Персонализированные рекомендации товаров для клиентов Оптимизация маркетинговых мероприятий Определение кандидатов для рассылки
Если товар покупают регулярно (например, кофе), то можно найти тех, кто покупает аналог и сделать предложение на товар, который надо вымыть из сетки Если товар покупают редко (например, свитер), смотрим историю покупок до приобретения свитера, находим схожие истории покупок у текущих клиентов, которые свитер еще не покупали, делаем им предложение
На исторических данных о чеках (за определенный период времени) строится модель ассоциативных правил Эта модель выявляется списки товаров, при покупке которых в большой вероятностью приобретается и целевой товар Выбираются те клиенты, которые покупают продукты из заданного списка, ...
Исторические данные делятся на две части– на первой части (60%) строится модель, а вторая часть (40%) используется для тестирования. Процентное соотношение можно изменять Автоматически формируется несколько моделей (дерево решений, регрессия, SVM и NB) Для каждой из них используются заданные параметры Автоматически запускается тестирование моделей на тестовых данных
ДЕРЕВО РЕШЕНИЙ Логическая и логистическая регресии