1. ガウス過程回帰(GPR)の概要?導出と計算例
大阪大学 石黒研究室 博士後期課程2年 浦井健次
機械学習勉強会@大阪大学豊中キャンパス
参考文献
[1] 中村泰, 石黒浩: Gaussian process regression を用いた確率
的方策に対する方策勾配法, IEICE, 2012.
[2] 大羽成征, 石井信, 佐藤雅昭: ガウス過程法のオンライン学習,
IEICE, 2001.
[3] Carl Edward Rasmussen and Christopher K. Williams:
Gaussian Processes for Machine Learning. Massachusetts
Institute of Technology: MIT-Press, 2006.
[4] C.M. ビショップ, 元田, 栗田, 樋口, 松本, 村田: パターン認識と機
械学習(上)(下) ベイズ理論による統計的予測, Springer, 2007.
[5] Duy Nguyen-tuing and Jan Peters: Local gaussian
process regression for real time online model learning and
control, In In Advances in Neural Information Processing
Systems 22 (NIPS), 2008.
[6] Yuya Okadome, Kenji Urai, Yutaka Nakamura, Tetsuya
Yomo, and Hiroshi Ishiguro: Adaptive LSH based on the
particle swarm method with the attractor selection model
for fast approximation of Gaussian process regression,
Journal of Artificial Life and Robotics, 2014.