The document presents an overview of the research group 'Generations' focused on image generation and generative models, detailing their contributions to fields like unpaired image-to-image translation and domain adaptation. It highlights various studies and techniques, including CycleGAN and neural radiance fields, aimed at enhancing image translation while preserving contextual integrity. The group is actively seeking new members for collaboration on these innovative themes.
The document discusses various algorithms and techniques for point cloud registration, including the Iterative Closest Point (ICP) algorithm and its variations in aligning 3D point sets. It references numerous studies and methods for optimizing transformations, particularly focusing on point-to-point and point-to-plane distances. Additionally, it details computational approaches and tools available in programming libraries for effective 3D modeling and transformation estimation.
cvpaper.challenge の Meta Study Group 発表スライド
cvpaper.challenge はコンピュータビジョン分野の今を映し、トレンドを創り出す挑戦です。論文サマリ?アイディア考案?議論?実装?論文投稿に取り組み、凡ゆる知識を共有します。2019の目標「トップ会議30+本投稿」「2回以上のトップ会議網羅的サーベイ」
http://xpaperchallenge.org/cv/
The document presents an overview of the research group 'Generations' focused on image generation and generative models, detailing their contributions to fields like unpaired image-to-image translation and domain adaptation. It highlights various studies and techniques, including CycleGAN and neural radiance fields, aimed at enhancing image translation while preserving contextual integrity. The group is actively seeking new members for collaboration on these innovative themes.
The document discusses various algorithms and techniques for point cloud registration, including the Iterative Closest Point (ICP) algorithm and its variations in aligning 3D point sets. It references numerous studies and methods for optimizing transformations, particularly focusing on point-to-point and point-to-plane distances. Additionally, it details computational approaches and tools available in programming libraries for effective 3D modeling and transformation estimation.
cvpaper.challenge の Meta Study Group 発表スライド
cvpaper.challenge はコンピュータビジョン分野の今を映し、トレンドを創り出す挑戦です。論文サマリ?アイディア考案?議論?実装?論文投稿に取り組み、凡ゆる知識を共有します。2019の目標「トップ会議30+本投稿」「2回以上のトップ会議網羅的サーベイ」
http://xpaperchallenge.org/cv/
2014/09/20に実施した、PepperTechFestivalでの技術セッション(基本)の講演資料となります。
本資料の無断転載を禁じます。すべての著作権はソフトバンクロボティクス株式会社に帰属します。
Presentation Docs for Pepper Tech Festival
Title : Technical Session Basic
SoftBank Robotics Corp. 2014. All rights reserved.