What is the Presentation?
Why people make it?
Who can we use for reference?
Where must we notice?
When we have contents,
How can we extend it?
Rediscover “Presentation”
with tips everyone heard once.
What is the Presentation?
Why people make it?
Who can we use for reference?
Where must we notice?
When we have contents,
How can we extend it?
Rediscover “Presentation”
with tips everyone heard once.
The document discusses queryable state for Apache Kafka Streams. It introduces Kafka Streams and stateful transformations. It then describes state for Kafka Streams, including how state is stored in RocksDB and tracked with a changelog in Kafka. Finally, it covers the new queryable state feature in Kafka Streams 0.10.1, which provides APIs to access state stores and retrieve values by key for windowed state.
This document discusses Hortonworks Data Platform (HDP) updates and releases. It notes that HDP will have more frequent releases of components like Spark, Hive, and Ambari, while having longer release cycles for core Hadoop components. HDP 2.5 is highlighted as including interactive Hive queries using LLAP, enterprise Spark support in Zeppelin notebooks, real-time applications support in Storm and HBase/Phoenix, streamlined operations using Ambari, and dynamic security with Atlas and Ranger integration.
How to create Yarn Application #cmdevio2017__john_smith__
?
This document describes the process of submitting and running a Yarn application. It involves:
1. Creating a YarnClient and initializing it with a Configuration.
2. Creating an ApplicationSubmissionContext and setting properties like the application name, resources required, and local resources.
3. Submitting the application and monitoring its status until completion.
9. 機械学習とは
これを愚直に実装すると…
boolean play = false;
if (outlook == “overcast”) {
play = true;
} else if (outlook == “sunny”) {
if (humidity == “high”) {
play = false;
} else if (humidity == “normal”) {
play = true;
}
} else if
...
10. 機械学習とは
これを愚直に実装すると…
boolean play = false;
if (outlook == “overcast”) {
play = true;
} else if (outlook == “sunny”) {
if (humidity == “high”) {
play = false;
} else if (humidity == “normal”) {
play = true;
}
} else if
...
いわゆるルールベース
ルールが増えると訳が分からない
矛盾してても分からない
管理者がいなくなると死ぬ
11. 機械学習とは
これを愚直に実装すると…
boolean play = false;
if (outlook == “overcast”) {
play = true;
} else if (outlook == “sunny”) {
if (humidity == “high”) {
play = false;
} else if (humidity == “normal”) {
play = true;
}
} else if
...
いわゆるルールベース
ルールが増えると訳が分からない
矛盾してても分からない
管理者がいなくなると死ぬ
データから自動生成したい!
エンジニアたるもの
自動化してなんぼですよね?