ºÝºÝߣ

ºÝºÝߣShare a Scribd company logo
NPTEL – Physics – Mathematical Physics - 1
Lecture 23
Representation of the Dirac delta function in other coordinate systems
ð½(ðœŒ, ïª, ð‘§) =
In a general sense, one can write,
ï¤ (𑟠− ð‘Ÿâ€²) = ï¤(𑥠− ð‘¥â€²) ï¤(𑦠− ð‘¦â€™) ï¤(𑧠− ð‘§â€²)
ï¤(ð‘¢âˆ’ð‘¢â€²)ï¤(ð‘£âˆ’ð‘£â€²)ï¤(ð‘¤âˆ’ð‘¤â€²)
=
|ð½
|
Where J represents the Jacobian of the transformation.
a) Cylindrical Coordinate System
The volume element in given by,
dv =𜌠d𜌠dïª dz
= | sin ïª
0
The determinant is J which is
ï² cos2ïª + ï² sin2ïª = ï²
cos ïª âˆ’ ï² sin ïª 0
ï² cos ïª 0
| 0
1
Thus ï¤(𑟠− ð‘Ÿâ€²) =
1
ï¤ (ï² âˆ’ ï² â€²)ï¤(ïª âˆ’ ïªâ€²)ï¤(𑧠− ð‘§
′) ï²
Also,
ð‘“(ð‘¥â€², ð‘¦â€², ð‘§â€²) = ∫ ð‘“ (ð‘¥, ð‘¦, ð‘§)ð›¿(𑥠− ð‘¥â€²) ð›¿(𑦠− ð‘¦â€²)ð›¿(𑧠− ð‘§â€²)ð‘‘ð‘¥ð‘‘ð‘¦ð‘‘ð‘§
|ðœ•ðœŒ
ðœ•ð‘¦
ðœ•ðœŒ
| ðœ•ð‘§
ðœ•ðœŒ
ðœ•ð‘¥ ðœ•ð‘¥
ðœ•ïª
ðœ•ð‘¦
ðœ•ïª
ðœ•ð‘§
ðœ•ïª
ðœ•ð‘¥
ðœ•ð‘§|
ðœ•ð‘¦
Joint initiative of IITs and IISc – Funded by MHRD Page 8 of 15
ðœ•ð‘§
ðœ•ð‘§|
ðœ•ð‘§
x =𜌠cosïª
y =𜌠sinïª
z = z
NPTEL – Physics – Mathematical Physics - 1
= ∫ ð‘“ (ï², ïª, ð‘§) ï² ð›¿(ï² âˆ’ ï² )ð›¿(ïª âˆ’ ïª )ð›¿(𑧠− 𑧠)ï² ð‘‘ïª ð‘‘ï² ð‘‘ð‘§
= ð‘“(ï²â€² , ïª â€², ð‘§â€²)
1 ′ ′ ′
b) Spherical polar coordinate system
Following the definition as before,
ï¤ (ð‘Ÿâƒ— − ð‘Ÿâ€²) ï¤ (ï± âˆ’ ï± â€²
) ï¤ (ïª âˆ’ ïªâ€² )
ï¤ (ð‘Ÿâƒ— −ð‘Ÿâ€²)
= ð‘Ÿ2ð‘ ð‘–ð‘›ï±
and ð‘“(ð‘¥â€², ð‘¦â€², ð‘§â€²) = ð‘“(ð‘Ÿâ€², ï± â€², ð‘§â€²).
An important relation in Electrodynamics
Let us first state the relation,
∇⃗ 2 ( ) = −4ðœ‹ð›¿(ð‘Ÿ
)
1
ð‘Ÿ
We shall prove the above relation now.
Using ∇⃗ 2=
1
(ð‘Ÿ2 ðœ•
)
ð‘Ÿ2 ðœ•
ð‘Ÿ
ðœ•
ðœ•ð‘Ÿ
∇⃗ 2 ( ) = 0 for all 𑟠>
0.
1
ð‘Ÿ
But as ð‘Ÿï‚® 0 the above identity does not stand as the operator itself in not defined
1
at = 0 . (because of the factor ). To know the behavior at ð‘Ÿ = 0, consider
ð‘Ÿ2
Gauss's divergence theorem.
∫ ∇⃗ . ð´ ð‘‘ð‘£ = ∮ ð´ . ð‘‘ð‘ 
ð‘£
ð‘ 
Suppose ð´ = ∇⃗ (1
) = −
ð‘ŸÌ‚ ð‘Ÿ ð‘Ÿ2
Joint initiative of IITs and IISc – Funded by MHRD Page 9 of 15
NPTEL – Physics – Mathematical Physics - 1
In order to evaluate the divergence of ð´ at the origin (ð‘Ÿ = 0) Consider a sphere of
radius R surrounding the origin. On the surface,|ð´| has a constant value
1
.
ð‘…2
Integrating over the spherical surface as shown in figure,
∮ ð´âƒ—⃗⃗ . ð‘‘⃗⃗⃗⃗𑠠=
−
1
∫ ð‘…2
2ðœ‹
∫ (ð‘ŸÌ‚. ð‘ŸÌ‚) ð‘…2ð‘ ð‘–ð‘›
ðœƒð‘‘ðœƒð‘‘ð›·
ðœƒ=0 ð›·=0
ðœ‹
= −4ï°
The answer we have got is independent of R.
Thus putting it in the divergence theorem,
ð‘Ÿ
∫ ∇⃗ . ∇⃗ (1
)ð‘‘ð‘£ = ∫ ð´ . ð‘‘ð‘  =
−4ðœ‹
∫ ∇2 (1
)ð‘‘ð‘£ = −4ðœ‹
ð‘Ÿ
The above result is true even in the limit Rï‚®0 Using the integral property of the ï¤-
function
∫ ð›¿(ð‘Ÿ )ð‘‘ð‘£ = 1
Joint initiative of IITs and IISc – Funded by MHRD Page 10 of 15
NPTEL – Physics – Mathematical Physics - 1
Thus, 2(
1
ð‘Ÿ
) = −4ï°ï¤ (ð‘Ÿ )
In a general sense, we can write
⃗∇⃗⃗
⃗2 (
1
| → − → |
ð‘Ÿ ð‘Ÿâ€²
) = −4ï°ï¤ (𑟠−⃗ð‘Ÿâƒ—
′)
Applications to Physical Problems
As derived earlier,
∇2 ( ) = −4πδ(r )
1
r
(1)
Where 𑟠= 𑟠− 𑟠′
The electrostatic potential is of the function
ð›· (ð‘Ÿ) =
ð‘ž
4ðœ‹ðœ€0ð‘Ÿ
ð‘ž
Thus, multiplying Eq. (1) with 4ðœ‹ðœ€0
∇2 (
ð‘ž
4ðœ‹ðœ€0ð‘Ÿ
) = −
4ðœ‹ð‘ž
4ðœ‹ðœ€0
ð›¿(r ) = − δ(r ) =
−
ð‘ž
ε0
ï²
ε
0
Thus we recover the Laplace’s equation.
Completeness condition of Special functions in terms of ï¤- function
in quantum mechanics, the wavefunctions for a harmonic oscillator wavefunctions
are given by,
ð‘¥2
ï™n (x)=An Hn (x) ð‘’− 2 n = 0,1,2 …………..
Joint initiative of IITs and IISc – Funded by MHRD Page 11 of 15
NPTEL – Physics – Mathematical Physics - 1
Corresponding to an energy spectrum given by
ð¸ð‘› = (ð‘› + 2
) â„Žï·
ï· is the frequency and ð»ð‘›(ð‘¥) represents a complete set of orthonormal functions in
the domain −∞ < 𑥠< ∞. Hn's are called the Hermite polynomials and AN is the
normalization constant,
1
ð´ð‘› =
1
√ðœ‹
1â„2 2ð‘›ð‘›!
The orthogonality of the wave function is represented by,
∞
∗
Joint initiative of IITs and IISc – Funded by MHRD Page 12 of 15
∫ ï™ ð‘š (ð‘¥)ï™ð‘› (ð‘¥)ð‘‘ð‘¥ = ï¤ð‘šð‘›
−∞
Since ï™n(x) are assumed to form a complete set of functions, we can expand any
well behaved function ï† (ð‘¥) as
ï† (ð‘¥) = ∑ ð‘ð‘› ï¹ð‘›(ð‘¥)
ð‘›
We multiply above by ï¹ð‘šâˆ— (ð‘¥) and integrated to obtain,
∫ ï™ ð‘š (ð‘¥)ï† (ð‘¥)ð‘‘ð‘¥ = ð‘›ð‘𑛠∫ ï™ ð‘š (ð‘¥)ï¹ð‘›(ð‘¥)ð‘‘ð‘¥
∗ ∗
∞ ∞
−∞ −∞
= ∑𑛠ð‘ð‘› ð›¿ð‘›ð‘š = ð‘ð‘š
Thus, substituting for ð‘ð‘›
ï† (ð‘¥) = 𑛠[∫ ï™ ð‘› (ð‘¥ )ï† (ð‘¥â€²)ð‘‘ð‘¥â€²] = ï™ð‘› (ð‘¥)
−∞
∗ ′
∞
Where the primed summation is used as a dummy variable. Interchanging the
summation and integration,
∞
ï† (ð‘¥) = ∫ ð‘‘ð‘¥ ï† (ð‘¥â€²)[ ′ ï¹ (ð‘¥)ï™ (ð‘¥
)]
′ ∗ ′
ð‘› ð‘› ð‘›
−∞
NPTEL – Physics – Mathematical Physics - 1
Since the wavefunction ï™ forms an orthonormal set,
∑ð‘›â€² ï¹ âˆ— (ð‘¥â€²)ï™ð‘› (ð‘¥) = ï¤ (𑥠− ð‘¥â€²): completeness condition.
ð‘›
Thus plugging in the form forï™n (x) in terms of the Hermite polynomials,
√ðœ‹
1
ð‘’Ì…(ð‘¥2+ð‘¥â€²2
)/2 ∑∞ 1
ð‘›=0 2ð‘› ð‘›
!
ð»ð‘› (x)ð»ð‘› (ð‘¥ ) = 𛿠(𑥠− ð‘¥ ) For -ï‚¥ < x, x’<ï‚¥
′ ′
Similarly for the Legendre polynomials, ð‘ƒð‘› (ð‘¥)
1
∑∞
2
(2ð‘› + 1)𑃠(ð‘¥â€²) = ð›¿(𑥠− ð‘¥â€²) − 1 ≤ ð‘¥, ð‘¥â€² ≤ 1
ð‘›=0 ð‘›
Similarly for sinusoidal functions,
ð‘“(ð‘¥) = ð´ð‘ ð‘–ð‘›ð‘˜ð‘¥ = ð´ð‘ ð‘–ð‘›
ð‘›ðœ‹ð‘¥
; 0 ≤ 𑥠≤ ð¿
ð¿
ð´2 ∑ ð‘ ð‘–ð‘› ð‘›ðœ‹ð‘¥
ð‘ ð‘–ð‘› ð‘›ðœ‹
ð‘¥ ð¿ ð¿
ð‘›
′
ð›¿(𑥠− ð‘¥â€²) For 0 ≤ x, x’≤ L
Tutorial
1. Evaluate the integral,
6
∫ (3ð‘¥2 − 2𑥠− 1)ð›¿(𑥠− 3)ð‘‘
ð‘¥
2
∞
Solution: Using ∫ ð‘“(ð‘¥)ð›¿(𑥠− ð‘Ž)ð‘‘ð‘¥ =
ð‘“(ð‘Ž) −∞
Here ð‘“(ð‘Ž) = ð‘“(ð‘¥ = 3) = 27 − 6 − 1 = 20
2. Show that ð‘¥
ð‘‘
ð›¿(ð‘¥) = −ð›¿(ð‘¥)
ð‘‘ð‘¥
Solution: ∫ ð‘“(ð‘¥) [ð‘¥
ð‘‘
ð‘‘ð‘¥
ð›¿(ð‘¥)] = ð‘¥ð‘“(ð‘¥)ð›¿(ð‘¥)|
∞
−∞
∞
−∞
∞
− ∫
Joint initiative of IITs and IISc – Funded by MHRD Page 13 of 15
ð‘‘
(ð‘¥ð‘“(ð‘¥))ð›¿(ð‘¥)ð‘‘
ð‘¥
−∞ ð‘‘ð‘¥
Where ð‘“(ð‘¥) is an arbitrary function.
The first term on the RHS is zero as
NPTEL – Physics – Mathematical Physics - 1
ð›¿(ð‘¥) = 0 at ð‘¥ = ±∞
Also (ð‘¥ð‘“(ð‘¥)) = ð‘“(ð‘¥) + ð‘¥ð‘“′(ð‘¥)
ð‘‘
ð‘‘ð‘¥
Thus LHS = − ∫ (ð‘“(ð‘¥) + ð‘¥ ð‘‘ð‘“
) ð›¿(ð‘¥)ð‘‘ð‘¥
ð‘‘ð‘¥
= 0 − ð‘“(0) = −ð‘“(0) = − ∫ ð‘“(ð‘¥)ð›¿(ð‘¥)ð‘‘ð‘¥
Thus, ð‘‘ð‘¥
ð‘¥
ð‘‘
ð›¿(ð‘¥) = −ð›¿(ð‘¥)
Proved.
3. Show that the derivative of a
ï±-function is a ï¤-function. A ï± -
function is defined by,
ðœƒ(ð‘¥) = 1 for ð‘¥ > 0
= 0 for 𑥠≤ 0
Solution: Proceeding as in the
previous problem,
∫ ð‘“(ð‘¥) ð‘‘ð‘¥ = ð‘“(ð‘¥)ðœƒ(ð‘¥)|
∞ ð‘‘ðœƒ
ð‘‘ð‘¥
−∞
∞
−∞
∞ ð‘‘ð‘“
− ∫ ðœƒ(ð‘¥
)ð‘‘ð‘¥
−∞ ð‘‘ð‘¥
= ð‘“(∞) − ∫
∞ ð‘‘ð‘“
ð‘‘ð‘‘ð‘¥
ð‘‘ð‘¥
0
= ð‘“(∞) − ð‘“(∞) + ð‘“(0)
= ð‘“(0)
∞
= ∫ ð‘“(ð‘¥)ð›¿
(ð‘¥)ð‘‘ð‘¥
−∞
Thus,
ð‘‘ðœƒ
ð‘‘ð‘¥
= ð›¿(ð‘¥)
4. Prove that
ð›¿(ð›¼ð‘¥) =
1
ð›¿(ð‘¥) where 𛼠is a constant
Joint initiative of IITs and IISc – Funded by MHRD Page 14 of 15
|ð›¼|
NPTEL – Physics – Mathematical Physics - 1
∞
Solution: ∫ ð‘“(ð‘¥)
ð›¿(ð›¼ð‘¥)ð‘‘ð‘¥
−∞
Changing variable from 𑥠→ ð‘ = ð›¼ð‘¥
ð‘¥ =
ð‘
and ð‘‘ð‘¥ =
1
ð‘‘ð‘
𛼠ð›¼
If 𛼠is positive then the integration runs from – 𛼠to +ð›¼. With 𛼠as
negative,
ð‘¥ = 𛼠implies ð‘ = −𛼠and vice versa. Thus the limits are
interchanged for negative 𛼠that entails a negative sign.
∞ ∞ ð‘ ð‘‘ð‘
∫ ð‘“(ð‘¥)ð›¿(ð›¼ð‘¥)ð‘‘ð‘¥ =
± ∫ ð‘“ ( ) ð›¿(ð‘)
−∞ −∞ 𛼠ð›¼
= ±
1
ð‘“(0)
ð›¼
=
1
ð‘“(0)
|ð›¼|
The proof follows in the same manner at problems (2) and (3).
5. Evaluate the integral
ð¼ = ∫ ð‘’−𑟠(∇⃗⃑.
rˆ
)
ð‘‘ð‘£
Joint initiative of IITs and IISc – Funded by MHRD Page 15 of 15
r2
ð‘£
Where v is a sphere of radius R.
Solution: ð¼ = ∫ ð‘’−𑟠4ðœ‹ð›¿3(ð‘Ÿâƒ‘) ð‘‘
ð‘£
ð‘£
= 4ðœ‹ð‘’−0 = 4ðœ‹

More Related Content

lec23.ppt

  • 1. NPTEL – Physics – Mathematical Physics - 1 Lecture 23 Representation of the Dirac delta function in other coordinate systems ð½(ðœŒ, ïª, ð‘§) = In a general sense, one can write, ï¤ (𑟠− ð‘Ÿâ€²) = ï¤(𑥠− ð‘¥â€²) ï¤(𑦠− ð‘¦â€™) ï¤(𑧠− ð‘§â€²) ï¤(ð‘¢âˆ’ð‘¢â€²)ï¤(ð‘£âˆ’ð‘£â€²)ï¤(ð‘¤âˆ’ð‘¤â€²) = |ð½ | Where J represents the Jacobian of the transformation. a) Cylindrical Coordinate System The volume element in given by, dv =𜌠d𜌠dïª dz = | sin ïª 0 The determinant is J which is ï² cos2ïª + ï² sin2ïª = ï² cos ïª âˆ’ ï² sin ïª 0 ï² cos ïª 0 | 0 1 Thus ï¤(𑟠− ð‘Ÿâ€²) = 1 ï¤ (ï² âˆ’ ï² â€²)ï¤(ïª âˆ’ ïªâ€²)ï¤(𑧠− 𑧠′) ï² Also, ð‘“(ð‘¥â€², ð‘¦â€², ð‘§â€²) = ∫ ð‘“ (ð‘¥, ð‘¦, ð‘§)ð›¿(𑥠− ð‘¥â€²) ð›¿(𑦠− ð‘¦â€²)ð›¿(𑧠− ð‘§â€²)ð‘‘ð‘¥ð‘‘ð‘¦ð‘‘𑧠|ðœ•ðœŒ ðœ•ð‘¦ ðœ•ðœŒ | ðœ•ð‘§ ðœ•ðœŒ ðœ•ð‘¥ ðœ•ð‘¥ ðœ•ïª ðœ•ð‘¦ ðœ•ïª ðœ•ð‘§ ðœ•ïª ðœ•ð‘¥ ðœ•ð‘§| ðœ•ð‘¦ Joint initiative of IITs and IISc – Funded by MHRD Page 8 of 15 ðœ•ð‘§ ðœ•ð‘§| ðœ•ð‘§ x =𜌠cosïª y =𜌠sinïª z = z
  • 2. NPTEL – Physics – Mathematical Physics - 1 = ∫ ð‘“ (ï², ïª, ð‘§) ï² ð›¿(ï² âˆ’ ï² )ð›¿(ïª âˆ’ ïª )ð›¿(𑧠− 𑧠)ï² ð‘‘ïª ð‘‘ï² ð‘‘𑧠= ð‘“(ï²â€² , ïª â€², ð‘§â€²) 1 ′ ′ ′ b) Spherical polar coordinate system Following the definition as before, ï¤ (ð‘Ÿâƒ— − ð‘Ÿâ€²) ï¤ (ï± âˆ’ ï± â€² ) ï¤ (ïª âˆ’ ïªâ€² ) ï¤ (ð‘Ÿâƒ— −ð‘Ÿâ€²) = ð‘Ÿ2ð‘ ð‘–ð‘›ï± and ð‘“(ð‘¥â€², ð‘¦â€², ð‘§â€²) = ð‘“(ð‘Ÿâ€², ï± â€², ð‘§â€²). An important relation in Electrodynamics Let us first state the relation, ∇⃗ 2 ( ) = −4ðœ‹ð›¿(ð‘Ÿ ) 1 ð‘Ÿ We shall prove the above relation now. Using ∇⃗ 2= 1 (ð‘Ÿ2 𜕠) ð‘Ÿ2 𜕠𑟠𜕠ðœ•ð‘Ÿ ∇⃗ 2 ( ) = 0 for all ð‘Ÿ > 0. 1 ð‘Ÿ But as ð‘Ÿï‚® 0 the above identity does not stand as the operator itself in not defined 1 at = 0 . (because of the factor ). To know the behavior at ð‘Ÿ = 0, consider ð‘Ÿ2 Gauss's divergence theorem. ∫ ∇⃗ . ð´ ð‘‘ð‘£ = ∮ ð´ . ð‘‘ð‘  ð‘£ ð‘  Suppose ð´ = ∇⃗ (1 ) = − ð‘ŸÌ‚ ð‘Ÿ ð‘Ÿ2 Joint initiative of IITs and IISc – Funded by MHRD Page 9 of 15
  • 3. NPTEL – Physics – Mathematical Physics - 1 In order to evaluate the divergence of ð´ at the origin (ð‘Ÿ = 0) Consider a sphere of radius R surrounding the origin. On the surface,|ð´| has a constant value 1 . ð‘…2 Integrating over the spherical surface as shown in figure, ∮ ð´âƒ—⃗⃗ . ð‘‘⃗⃗⃗⃗𑠠= − 1 ∫ ð‘…2 2𜋠∫ (ð‘ŸÌ‚. ð‘ŸÌ‚) ð‘…2ð‘ ð‘–ð‘› ðœƒð‘‘ðœƒð‘‘ð›· ðœƒ=0 ð›·=0 𜋠= −4ï° The answer we have got is independent of R. Thus putting it in the divergence theorem, 𑟠∫ ∇⃗ . ∇⃗ (1 )ð‘‘ð‘£ = ∫ ð´ . ð‘‘ð‘  = −4𜋠∫ ∇2 (1 )ð‘‘ð‘£ = −4𜋠𑟠The above result is true even in the limit Rï‚®0 Using the integral property of the ï¤- function ∫ ð›¿(ð‘Ÿ )ð‘‘ð‘£ = 1 Joint initiative of IITs and IISc – Funded by MHRD Page 10 of 15
  • 4. NPTEL – Physics – Mathematical Physics - 1 Thus, 2( 1 ð‘Ÿ ) = −4ï°ï¤ (ð‘Ÿ ) In a general sense, we can write ⃗∇⃗⃗ ⃗2 ( 1 | → − → | ð‘Ÿ ð‘Ÿâ€² ) = −4ï°ï¤ (𑟠−⃗ð‘Ÿâƒ— ′) Applications to Physical Problems As derived earlier, ∇2 ( ) = −4πδ(r ) 1 r (1) Where ð‘Ÿ = 𑟠− 𑟠′ The electrostatic potential is of the function ð›· (ð‘Ÿ) = ð‘ž 4ðœ‹ðœ€0ð‘Ÿ ð‘ž Thus, multiplying Eq. (1) with 4ðœ‹ðœ€0 ∇2 ( ð‘ž 4ðœ‹ðœ€0ð‘Ÿ ) = − 4ðœ‹ð‘ž 4ðœ‹ðœ€0 ð›¿(r ) = − δ(r ) = − 𑞠ε0 ï² Îµ 0 Thus we recover the Laplace’s equation. Completeness condition of Special functions in terms of ï¤- function in quantum mechanics, the wavefunctions for a harmonic oscillator wavefunctions are given by, ð‘¥2 ï™n (x)=An Hn (x) ð‘’− 2 n = 0,1,2 ………….. Joint initiative of IITs and IISc – Funded by MHRD Page 11 of 15
  • 5. NPTEL – Physics – Mathematical Physics - 1 Corresponding to an energy spectrum given by ð¸ð‘› = (ð‘› + 2 ) â„Žï· ï· is the frequency and ð»ð‘›(ð‘¥) represents a complete set of orthonormal functions in the domain −∞ < ð‘¥ < ∞. Hn's are called the Hermite polynomials and AN is the normalization constant, 1 ð´ð‘› = 1 √𜋠1â„2 2ð‘›ð‘›! The orthogonality of the wave function is represented by, ∞ ∗ Joint initiative of IITs and IISc – Funded by MHRD Page 12 of 15 ∫ ï™ ð‘š (ð‘¥)ï™ð‘› (ð‘¥)ð‘‘ð‘¥ = ï¤ð‘šð‘› −∞ Since ï™n(x) are assumed to form a complete set of functions, we can expand any well behaved function ï† (ð‘¥) as ï† (ð‘¥) = ∑ ð‘ð‘› ï¹ð‘›(ð‘¥) ð‘› We multiply above by ï¹ð‘šâˆ— (ð‘¥) and integrated to obtain, ∫ ï™ ð‘š (ð‘¥)ï† (ð‘¥)ð‘‘ð‘¥ = ð‘›ð‘𑛠∫ ï™ ð‘š (ð‘¥)ï¹ð‘›(ð‘¥)ð‘‘𑥠∗ ∗ ∞ ∞ −∞ −∞ = ∑𑛠ð‘ð‘› ð›¿ð‘›ð‘š = ð‘ð‘š Thus, substituting for ð‘ð‘› ï† (ð‘¥) = 𑛠[∫ ï™ ð‘› (ð‘¥ )ï† (ð‘¥â€²)ð‘‘ð‘¥â€²] = ï™ð‘› (ð‘¥) −∞ ∗ ′ ∞ Where the primed summation is used as a dummy variable. Interchanging the summation and integration, ∞ ï† (ð‘¥) = ∫ ð‘‘ð‘¥ ï† (ð‘¥â€²)[ ′ ï¹ (ð‘¥)ï™ (ð‘¥ )] ′ ∗ ′ 𑛠𑛠𑛠−∞
  • 6. NPTEL – Physics – Mathematical Physics - 1 Since the wavefunction ï™ forms an orthonormal set, ∑ð‘›â€² ï¹ âˆ— (ð‘¥â€²)ï™ð‘› (ð‘¥) = ï¤ (𑥠− ð‘¥â€²): completeness condition. ð‘› Thus plugging in the form forï™n (x) in terms of the Hermite polynomials, √𜋠1 ð‘’Ì…(ð‘¥2+ð‘¥â€²2 )/2 ∑∞ 1 ð‘›=0 2ð‘› ð‘› ! ð»ð‘› (x)ð»ð‘› (ð‘¥ ) = 𛿠(𑥠− ð‘¥ ) For -ï‚¥ < x, x’<ï‚¥ ′ ′ Similarly for the Legendre polynomials, ð‘ƒð‘› (ð‘¥) 1 ∑∞ 2 (2ð‘› + 1)𑃠(ð‘¥â€²) = ð›¿(𑥠− ð‘¥â€²) − 1 ≤ ð‘¥, ð‘¥â€² ≤ 1 ð‘›=0 ð‘› Similarly for sinusoidal functions, ð‘“(ð‘¥) = ð´ð‘ ð‘–ð‘›ð‘˜ð‘¥ = ð´ð‘ ð‘–ð‘› ð‘›ðœ‹ð‘¥ ; 0 ≤ 𑥠≤ ð¿ ð¿ ð´2 ∑ ð‘ ð‘–ð‘› ð‘›ðœ‹ð‘¥ ð‘ ð‘–ð‘› ð‘›ðœ‹ ð‘¥ ð¿ ð¿ 𑛠′ ð›¿(𑥠− ð‘¥â€²) For 0 ≤ x, x’≤ L Tutorial 1. Evaluate the integral, 6 ∫ (3ð‘¥2 − 2𑥠− 1)ð›¿(𑥠− 3)ð‘‘ ð‘¥ 2 ∞ Solution: Using ∫ ð‘“(ð‘¥)ð›¿(𑥠− ð‘Ž)ð‘‘ð‘¥ = ð‘“(ð‘Ž) −∞ Here ð‘“(ð‘Ž) = ð‘“(ð‘¥ = 3) = 27 − 6 − 1 = 20 2. Show that ð‘¥ ð‘‘ ð›¿(ð‘¥) = −ð›¿(ð‘¥) ð‘‘ð‘¥ Solution: ∫ ð‘“(ð‘¥) [ð‘¥ ð‘‘ ð‘‘ð‘¥ ð›¿(ð‘¥)] = ð‘¥ð‘“(ð‘¥)ð›¿(ð‘¥)| ∞ −∞ ∞ −∞ ∞ − ∫ Joint initiative of IITs and IISc – Funded by MHRD Page 13 of 15 ð‘‘ (ð‘¥ð‘“(ð‘¥))ð›¿(ð‘¥)𑑠𑥠−∞ ð‘‘ð‘¥ Where ð‘“(ð‘¥) is an arbitrary function. The first term on the RHS is zero as
  • 7. NPTEL – Physics – Mathematical Physics - 1 ð›¿(ð‘¥) = 0 at ð‘¥ = ±∞ Also (ð‘¥ð‘“(ð‘¥)) = ð‘“(ð‘¥) + ð‘¥ð‘“′(ð‘¥) ð‘‘ ð‘‘ð‘¥ Thus LHS = − ∫ (ð‘“(ð‘¥) + ð‘¥ ð‘‘ð‘“ ) ð›¿(ð‘¥)ð‘‘ð‘¥ ð‘‘ð‘¥ = 0 − ð‘“(0) = −ð‘“(0) = − ∫ ð‘“(ð‘¥)ð›¿(ð‘¥)ð‘‘ð‘¥ Thus, ð‘‘ð‘¥ ð‘¥ ð‘‘ ð›¿(ð‘¥) = −ð›¿(ð‘¥) Proved. 3. Show that the derivative of a ï±-function is a ï¤-function. A ï± - function is defined by, ðœƒ(ð‘¥) = 1 for ð‘¥ > 0 = 0 for 𑥠≤ 0 Solution: Proceeding as in the previous problem, ∫ ð‘“(ð‘¥) ð‘‘ð‘¥ = ð‘“(ð‘¥)ðœƒ(ð‘¥)| ∞ ð‘‘𜃠ð‘‘𑥠−∞ ∞ −∞ ∞ ð‘‘𑓠− ∫ ðœƒ(ð‘¥ )ð‘‘𑥠−∞ ð‘‘ð‘¥ = ð‘“(∞) − ∫ ∞ ð‘‘ð‘“ ð‘‘ð‘‘ð‘¥ ð‘‘ð‘¥ 0 = ð‘“(∞) − ð‘“(∞) + ð‘“(0) = ð‘“(0) ∞ = ∫ ð‘“(ð‘¥)𛿠(ð‘¥)ð‘‘𑥠−∞ Thus, ð‘‘𜃠ð‘‘ð‘¥ = ð›¿(ð‘¥) 4. Prove that ð›¿(ð›¼ð‘¥) = 1 ð›¿(ð‘¥) where 𛼠is a constant Joint initiative of IITs and IISc – Funded by MHRD Page 14 of 15 |ð›¼|
  • 8. NPTEL – Physics – Mathematical Physics - 1 ∞ Solution: ∫ ð‘“(ð‘¥) ð›¿(ð›¼ð‘¥)ð‘‘𑥠−∞ Changing variable from 𑥠→ ð‘ = ð›¼ð‘¥ ð‘¥ = ð‘ and ð‘‘ð‘¥ = 1 ð‘‘ð‘ 𛼠𛼠If 𛼠is positive then the integration runs from – 𛼠to +ð›¼. With 𛼠as negative, ð‘¥ = 𛼠implies ð‘ = −𛼠and vice versa. Thus the limits are interchanged for negative 𛼠that entails a negative sign. ∞ ∞ ð‘ ð‘‘ð‘ ∫ ð‘“(ð‘¥)ð›¿(ð›¼ð‘¥)ð‘‘ð‘¥ = ± ∫ ð‘“ ( ) ð›¿(ð‘) −∞ −∞ 𛼠𛼠= ± 1 ð‘“(0) 𛼠= 1 ð‘“(0) |ð›¼| The proof follows in the same manner at problems (2) and (3). 5. Evaluate the integral ð¼ = ∫ ð‘’−𑟠(∇⃗⃑. rˆ ) ð‘‘ð‘£ Joint initiative of IITs and IISc – Funded by MHRD Page 15 of 15 r2 ð‘£ Where v is a sphere of radius R. Solution: ð¼ = ∫ ð‘’−𑟠4ðœ‹ð›¿3(ð‘Ÿâƒ‘) ð‘‘ ð‘£ ð‘£ = 4ðœ‹ð‘’−0 = 4ðœ‹