際際滷

際際滷Share a Scribd company logo
蠍 るゼ 
襷ろ 1  豪Μ 豸
davinnovation@gmail.com
一危 覿    覦蠍

一危磯ゼ 覲企 語, 
語企 蠍朱 襾碁Μ  旧旭
覦覃伎 覦襦 襴糾 覿
襷豺螻 覈語  覦  豢 
scoreboard 覲伎 螻 1
覃語   蟾 旧旭
 襷 襾語  覈語   危
れ 覈語 蟲 一企 襦蠏碁覦 ル
豕 れ伎
豕 覦
豕 豐煙覲伎
一危 覿    覦蠍

譬蟆 襷覃 Heuristic
讌れ朱 NOGADA
Try-Error-Feedback
 覓朱 瑚 給
譬 瑚るゼ  TIP
1. 襷 螻褐  == 一危 り
2. れ 螻褐  == 覈語 れ
3. 譬 一レ  == 譬 Framework 覈
(*3 elice 讌ъ  蠍郁 覦 覃  襷れ 譴 .)
襷 螻褐  == 一危 り
{
"matchDuration": 1716, // 豐 , 朱 蟆 る 讌螳襯 覩
"teams": [ // 2螳 Dictionary
{
"firstDragon": true, //   (覈ろ)襯 襾殊 譯曙螳
"dragonKills": 2, //    覈覯 譯曙螳
"winner": false, //    豪Μ螳
"firstBaron": false, //   覦襦(覈ろ)襯 襾殊 譯曙螳
"baronKills": 0, //   覦襦 覈覯 譯曙螳
"firstBlood": false, // 豌    螳
"teamId": 100 //  ID
},
...
],
"participants": [ // 10螳 Dictionary
{
"championId": 412, // 豈殊 (貂襴) ID
"summonerId": 21983, // 危 蟆企┯ ID
"teamId": 100, //  ID (teams teamId 襷れ)
"stats": { // 企  糾襯 覩
"kills": 2, //  蟆企┯螳 るジ 蟆企┯襯 覈覯 譯曙螳
"deaths": 8, //  蟆企┯螳 覈覯 譯曙螳
"assists": 11, // るジ 蟆企┯襯 譯曙企 覈覯  譯殊螳
"goldEarned": 7314, // 豐  螻 (蟆  )
"totalDamageDealt": 27629, // 覈ろ + 蟆企┯蟆 螳 豐 磯語
"totalDamageDealtToChampions": 9507, // 蟆企┯蟆襷 螳 豐 磯語
"totalDamageTaken": 20419, // 覦 豐 狩
"minionsKilled": 37, // 譯曙 覩碁(覈ろ) 
"totalHeal": 1014, // 豐 豺
"totalTimeCrowdControlDealt": 241, // るジ 伎伎蟆 Crowd Control (CC) 襯  豐 螳
"wardsPlaced": 5 // Ward(朱ゼ 譯朱 危)  襷旧 レ逢 
"items": [ // 危 覲
3401,
2049,
1031,
3270,
0,
2043,
{
"teams": [ // 2螳  給.
{
"teamId": 200 //  ID
},
...
],
"participants": [ // 10覈 蟆企┯ 覲
{
"championId": 421, // 豈殊 ( 貂襴) ID
"summonerId": 22082, // 蟆企┯ ID
"teamId": 100 //  ID
},
...
]
}
れ 螻褐  == 覈語 れ
And Hyperparameter Tuning
譬 一レ  == 譬 Framework
Experiment. Iter 0
{
"teams": [ // 2螳  給.
{
"teamId": 200 //  ID
},
...
],
"participants": [ // 10覈 蟆企┯ 覲
{
"championId": 421, // 豈殊 ( 貂襴) ID
"summonerId": 22082, // 蟆企┯ ID
"teamId": 100 //  ID
},
...
]
}
Test 覦   覲企
豈殊 ID, 蟆企┯ ID, 
<螳 襴>
蟆  磯襯企ゼ 覦危讌 螻
 譴 蟇 豈殊語願讌?
1 0 0 1 0
豈殊 
0 0 1 1 0
豈殊 
+
Team 100 Team 200
Sparse Matrix
Experiment. Iter 0
1 0 0 1 0
豈殊 
0 0 1 1 0
豈殊 
+
Team 100 Team 200
<- Data Input
<- Model
<- Output0 || 1
Logistic Regression, Decision Tree, Neural Network,
Gradient Boost, SVC, KNN
願碓 朱誤磯 螻,  覈碁
る慨螻, 觚 襷 伎狩螻
Experiment. Iter 0
1 0 0 1 0
豈殊 
0 0 1 1 0
豈殊 
+
Team 100 Team 200
<- Data Input
<- Model
<- Output0 || 1
螳 ろ伎 宴
Experiment. Iter 0 result
襦れ 蠏碁 貉碁, 蟆碁 豈殊碁 覲企 65 蟆讌?
蠏瑚 襷ろ1 碁;; 豈 レ碁 蟇郁
覓企Μ OP豈 企 螳 蟆讌
殊伎 螻襷 襴螳
Experiment. Iter 0 result
85??? 襦れ OP譟壱 蟆伎給も
覯曙伎語
襷譟  蠏碁り 朱.
Experiment. Iter 0 result
Experiment. Iter 1
{
"teams": [ // 2螳  給.
{
"teamId": 200 //  ID
},
...
],
"participants": [ // 10覈 蟆企┯ 覲
{
"championId": 421, // 豈殊 ( 貂襴) ID
"summonerId": 22082, // 蟆企┯ ID
"teamId": 100 //  ID
},
...
]
}
豈殊 覲,  覲企 譴朱
蟇 蟆企┯ 覲
op.gg覲企 螳 朱 蟆  (豕蠏 20 蟆)
 蟯 l企蟇 蟆讌
1 0 0 1 0
豈殊 
0 0 1 1 0
豈殊 
+
Team 100
Team 200
Sparse Matrix
<螳 襴>
+ 3 0 2 1 0 3 2 1 0 0
Team 100
螳 危伎
願下朱 + 1 譟朱 -1 * alpha ( < 1 )
豕譬  螳
Experiment. Iter 1
3 0 2 1playerA B,C,D,E
3 -1 1 0playerB A,C,D,E
蠍  伎  譟壱襷 螻
. X 10
覿襦 : 覯  轟 豌 磯
覿襦 : 螻 碁,襷 
1 0 0 1 0
豈殊 
0 0 1 1 0
豈殊 
+
Team 100
+
Experiment. Iter 1
  85 (  讌 )
Experiment. Iter 2
500playerA
0playerB
 企 豈殊  
. X 10
蟇一 覃 豈蠍
豈 襴 || train れ  
1 0 0 1 0
豈殊 
0 0 1 1 0
豈殊 
+
Team 100
+
Experiment. Iter 2
  85
Experiment. Iter 3
500playerA
0playerB
 豈殊語 豪(train)
. X 10
磯蠍 豈
OP 豈碁
1 0 0 1 0
豈殊 
0 0 1 1 0
豈殊 
+
Team 100
+
Experiment. Iter 3
  85
Experiment. Iter 4
Iter2 + Iter3 + Iter4
Experiment. Iter 4
86!
Auto ML  覈語 Gradient Boost Model
( Not Ensemble Model )
Experiment. Iter 5
Iter2 + Iter3 + Iter4
渚覃 Conv1D  ==
Experiment. Iter 5
87!!!
れ 碁企  val_acc 豌 .
Callback朱 豕螻 覈語
Abstract : ML 
蠏碁 覃 
覃 讌  襷 碁企 螳譬 瑚も
殊伎 豪 語  螻 蟾
蠏碁 螳 覯 覓殊企瓦給
Q. 襷ろ 一伎  豪Μ  覓伎瑚?
譟壱襷 覃 覿覿
伎 觚1 襦
覿伎給.
蟆曙沖伎殊
螳
If 1譯殊殊 朱
襷 企 螳 螻
一危 譴 曙企慨螻
覿覃 譬給も
Q & A  給
伎
davinnovation@gmail.com

More Related Content

More from Dong Heon Cho (20)

Forward-Forward Algorithm
Forward-Forward AlgorithmForward-Forward Algorithm
Forward-Forward Algorithm
Dong Heon Cho
What is Texture.pdf
What is Texture.pdfWhat is Texture.pdf
What is Texture.pdf
Dong Heon Cho
BADGE
BADGEBADGE
BADGE
Dong Heon Cho
Neural Radiance Field
Neural Radiance FieldNeural Radiance Field
Neural Radiance Field
Dong Heon Cho
2020 > Self supervised learning
2020 > Self supervised learning2020 > Self supervised learning
2020 > Self supervised learning
Dong Heon Cho
All about that pooling
All about that poolingAll about that pooling
All about that pooling
Dong Heon Cho
Background elimination review
Background elimination reviewBackground elimination review
Background elimination review
Dong Heon Cho
Transparent Latent GAN
Transparent Latent GANTransparent Latent GAN
Transparent Latent GAN
Dong Heon Cho
Image matting atoc
Image matting atocImage matting atoc
Image matting atoc
Dong Heon Cho
Multi object Deep reinforcement learning
Multi object Deep reinforcement learningMulti object Deep reinforcement learning
Multi object Deep reinforcement learning
Dong Heon Cho
Multi agent reinforcement learning for sequential social dilemmas
Multi agent reinforcement learning for sequential social dilemmasMulti agent reinforcement learning for sequential social dilemmas
Multi agent reinforcement learning for sequential social dilemmas
Dong Heon Cho
Multi agent System
Multi agent SystemMulti agent System
Multi agent System
Dong Heon Cho
Hybrid reward architecture
Hybrid reward architectureHybrid reward architecture
Hybrid reward architecture
Dong Heon Cho
Use Jupyter notebook guide in 5 minutes
Use Jupyter notebook guide in 5 minutesUse Jupyter notebook guide in 5 minutes
Use Jupyter notebook guide in 5 minutes
Dong Heon Cho
AlexNet and so on...
AlexNet and so on...AlexNet and so on...
AlexNet and so on...
Dong Heon Cho
Deep Learning AtoC with Image Perspective
Deep Learning AtoC with Image PerspectiveDeep Learning AtoC with Image Perspective
Deep Learning AtoC with Image Perspective
Dong Heon Cho
How can we train with few data
How can we train with few dataHow can we train with few data
How can we train with few data
Dong Heon Cho
Domain adaptation gan
Domain adaptation ganDomain adaptation gan
Domain adaptation gan
Dong Heon Cho
Dense sparse-dense training for dnn and Other Models
Dense sparse-dense training for dnn and Other ModelsDense sparse-dense training for dnn and Other Models
Dense sparse-dense training for dnn and Other Models
Dong Heon Cho
Squeeeze models
Squeeeze modelsSqueeeze models
Squeeeze models
Dong Heon Cho
Forward-Forward Algorithm
Forward-Forward AlgorithmForward-Forward Algorithm
Forward-Forward Algorithm
Dong Heon Cho
What is Texture.pdf
What is Texture.pdfWhat is Texture.pdf
What is Texture.pdf
Dong Heon Cho
Neural Radiance Field
Neural Radiance FieldNeural Radiance Field
Neural Radiance Field
Dong Heon Cho
2020 > Self supervised learning
2020 > Self supervised learning2020 > Self supervised learning
2020 > Self supervised learning
Dong Heon Cho
All about that pooling
All about that poolingAll about that pooling
All about that pooling
Dong Heon Cho
Background elimination review
Background elimination reviewBackground elimination review
Background elimination review
Dong Heon Cho
Transparent Latent GAN
Transparent Latent GANTransparent Latent GAN
Transparent Latent GAN
Dong Heon Cho
Image matting atoc
Image matting atocImage matting atoc
Image matting atoc
Dong Heon Cho
Multi object Deep reinforcement learning
Multi object Deep reinforcement learningMulti object Deep reinforcement learning
Multi object Deep reinforcement learning
Dong Heon Cho
Multi agent reinforcement learning for sequential social dilemmas
Multi agent reinforcement learning for sequential social dilemmasMulti agent reinforcement learning for sequential social dilemmas
Multi agent reinforcement learning for sequential social dilemmas
Dong Heon Cho
Multi agent System
Multi agent SystemMulti agent System
Multi agent System
Dong Heon Cho
Hybrid reward architecture
Hybrid reward architectureHybrid reward architecture
Hybrid reward architecture
Dong Heon Cho
Use Jupyter notebook guide in 5 minutes
Use Jupyter notebook guide in 5 minutesUse Jupyter notebook guide in 5 minutes
Use Jupyter notebook guide in 5 minutes
Dong Heon Cho
AlexNet and so on...
AlexNet and so on...AlexNet and so on...
AlexNet and so on...
Dong Heon Cho
Deep Learning AtoC with Image Perspective
Deep Learning AtoC with Image PerspectiveDeep Learning AtoC with Image Perspective
Deep Learning AtoC with Image Perspective
Dong Heon Cho
How can we train with few data
How can we train with few dataHow can we train with few data
How can we train with few data
Dong Heon Cho
Domain adaptation gan
Domain adaptation ganDomain adaptation gan
Domain adaptation gan
Dong Heon Cho
Dense sparse-dense training for dnn and Other Models
Dense sparse-dense training for dnn and Other ModelsDense sparse-dense training for dnn and Other Models
Dense sparse-dense training for dnn and Other Models
Dong Heon Cho

LOL win prediction

  • 1. 蠍 るゼ 襷ろ 1 豪Μ 豸 davinnovation@gmail.com
  • 2. 一危 覿 覦蠍 一危磯ゼ 覲企 語, 語企 蠍朱 襾碁Μ 旧旭 覦覃伎 覦襦 襴糾 覿 襷豺螻 覈語 覦 豢 scoreboard 覲伎 螻 1 覃語 蟾 旧旭 襷 襾語 覈語 危 れ 覈語 蟲 一企 襦蠏碁覦 ル 豕 れ伎 豕 覦 豕 豐煙覲伎
  • 3. 一危 覿 覦蠍 譬蟆 襷覃 Heuristic 讌れ朱 NOGADA Try-Error-Feedback
  • 4. 覓朱 瑚 給 譬 瑚るゼ TIP 1. 襷 螻褐 == 一危 り 2. れ 螻褐 == 覈語 れ 3. 譬 一レ == 譬 Framework 覈 (*3 elice 讌ъ 蠍郁 覦 覃 襷れ 譴 .)
  • 5. 襷 螻褐 == 一危 り { "matchDuration": 1716, // 豐 , 朱 蟆 る 讌螳襯 覩 "teams": [ // 2螳 Dictionary { "firstDragon": true, // (覈ろ)襯 襾殊 譯曙螳 "dragonKills": 2, // 覈覯 譯曙螳 "winner": false, // 豪Μ螳 "firstBaron": false, // 覦襦(覈ろ)襯 襾殊 譯曙螳 "baronKills": 0, // 覦襦 覈覯 譯曙螳 "firstBlood": false, // 豌 螳 "teamId": 100 // ID }, ... ], "participants": [ // 10螳 Dictionary { "championId": 412, // 豈殊 (貂襴) ID "summonerId": 21983, // 危 蟆企┯ ID "teamId": 100, // ID (teams teamId 襷れ) "stats": { // 企 糾襯 覩 "kills": 2, // 蟆企┯螳 るジ 蟆企┯襯 覈覯 譯曙螳 "deaths": 8, // 蟆企┯螳 覈覯 譯曙螳 "assists": 11, // るジ 蟆企┯襯 譯曙企 覈覯 譯殊螳 "goldEarned": 7314, // 豐 螻 (蟆 ) "totalDamageDealt": 27629, // 覈ろ + 蟆企┯蟆 螳 豐 磯語 "totalDamageDealtToChampions": 9507, // 蟆企┯蟆襷 螳 豐 磯語 "totalDamageTaken": 20419, // 覦 豐 狩 "minionsKilled": 37, // 譯曙 覩碁(覈ろ) "totalHeal": 1014, // 豐 豺 "totalTimeCrowdControlDealt": 241, // るジ 伎伎蟆 Crowd Control (CC) 襯 豐 螳 "wardsPlaced": 5 // Ward(朱ゼ 譯朱 危) 襷旧 レ逢 "items": [ // 危 覲 3401, 2049, 1031, 3270, 0, 2043, { "teams": [ // 2螳 給. { "teamId": 200 // ID }, ... ], "participants": [ // 10覈 蟆企┯ 覲 { "championId": 421, // 豈殊 ( 貂襴) ID "summonerId": 22082, // 蟆企┯ ID "teamId": 100 // ID }, ... ] }
  • 6. れ 螻褐 == 覈語 れ And Hyperparameter Tuning
  • 7. 譬 一レ == 譬 Framework
  • 8. Experiment. Iter 0 { "teams": [ // 2螳 給. { "teamId": 200 // ID }, ... ], "participants": [ // 10覈 蟆企┯ 覲 { "championId": 421, // 豈殊 ( 貂襴) ID "summonerId": 22082, // 蟆企┯ ID "teamId": 100 // ID }, ... ] } Test 覦 覲企 豈殊 ID, 蟆企┯ ID, <螳 襴> 蟆 磯襯企ゼ 覦危讌 螻 譴 蟇 豈殊語願讌? 1 0 0 1 0 豈殊 0 0 1 1 0 豈殊 + Team 100 Team 200 Sparse Matrix
  • 9. Experiment. Iter 0 1 0 0 1 0 豈殊 0 0 1 1 0 豈殊 + Team 100 Team 200 <- Data Input <- Model <- Output0 || 1 Logistic Regression, Decision Tree, Neural Network, Gradient Boost, SVC, KNN 願碓 朱誤磯 螻, 覈碁 る慨螻, 觚 襷 伎狩螻
  • 10. Experiment. Iter 0 1 0 0 1 0 豈殊 0 0 1 1 0 豈殊 + Team 100 Team 200 <- Data Input <- Model <- Output0 || 1 螳 ろ伎 宴
  • 11. Experiment. Iter 0 result 襦れ 蠏碁 貉碁, 蟆碁 豈殊碁 覲企 65 蟆讌? 蠏瑚 襷ろ1 碁;; 豈 レ碁 蟇郁 覓企Μ OP豈 企 螳 蟆讌 殊伎 螻襷 襴螳
  • 12. Experiment. Iter 0 result 85??? 襦れ OP譟壱 蟆伎給も 覯曙伎語 襷譟 蠏碁り 朱.
  • 14. Experiment. Iter 1 { "teams": [ // 2螳 給. { "teamId": 200 // ID }, ... ], "participants": [ // 10覈 蟆企┯ 覲 { "championId": 421, // 豈殊 ( 貂襴) ID "summonerId": 22082, // 蟆企┯ ID "teamId": 100 // ID }, ... ] } 豈殊 覲, 覲企 譴朱 蟇 蟆企┯ 覲 op.gg覲企 螳 朱 蟆 (豕蠏 20 蟆) 蟯 l企蟇 蟆讌 1 0 0 1 0 豈殊 0 0 1 1 0 豈殊 + Team 100 Team 200 Sparse Matrix <螳 襴> + 3 0 2 1 0 3 2 1 0 0 Team 100 螳 危伎 願下朱 + 1 譟朱 -1 * alpha ( < 1 ) 豕譬 螳
  • 15. Experiment. Iter 1 3 0 2 1playerA B,C,D,E 3 -1 1 0playerB A,C,D,E 蠍 伎 譟壱襷 螻 . X 10 覿襦 : 覯 轟 豌 磯 覿襦 : 螻 碁,襷 1 0 0 1 0 豈殊 0 0 1 1 0 豈殊 + Team 100 +
  • 16. Experiment. Iter 1 85 ( 讌 )
  • 17. Experiment. Iter 2 500playerA 0playerB 企 豈殊 . X 10 蟇一 覃 豈蠍 豈 襴 || train れ 1 0 0 1 0 豈殊 0 0 1 1 0 豈殊 + Team 100 +
  • 19. Experiment. Iter 3 500playerA 0playerB 豈殊語 豪(train) . X 10 磯蠍 豈 OP 豈碁 1 0 0 1 0 豈殊 0 0 1 1 0 豈殊 + Team 100 +
  • 21. Experiment. Iter 4 Iter2 + Iter3 + Iter4
  • 22. Experiment. Iter 4 86! Auto ML 覈語 Gradient Boost Model ( Not Ensemble Model )
  • 23. Experiment. Iter 5 Iter2 + Iter3 + Iter4 渚覃 Conv1D ==
  • 24. Experiment. Iter 5 87!!! れ 碁企 val_acc 豌 . Callback朱 豕螻 覈語
  • 25. Abstract : ML 蠏碁 覃 覃 讌 襷 碁企 螳譬 瑚も 殊伎 豪 語 螻 蟾
  • 26. 蠏碁 螳 覯 覓殊企瓦給 Q. 襷ろ 一伎 豪Μ 覓伎瑚? 譟壱襷 覃 覿覿
  • 28. If 1譯殊殊 朱 襷 企 螳 螻 一危 譴 曙企慨螻 覿覃 譬給も
  • 29. Q & A 給 伎 davinnovation@gmail.com