際際滷

際際滷Share a Scribd company logo
What is wrong with backpropagation
The Forward-Forward Algorithm: Some Preliminary Investigations
Neurips 2022
What is wrong with backpropagation
> Biological Perspective
- Error derivative propagation? ???, neural activity?? ???? ??? cortex?? ??? ? ??
=> ??? ^later time step ̄?? ????? ?? ???, real-time? ???? ????? ?? ??
> Computational Perspective
- backpropagation? ^?? forward pass ̄? derivative? ??? ? ??? ? (ex. rnn ???? ? ??
sequence? recurring?? ??? ????? ? ??)
=> ??? ??? reinforcement learning? ? ? random weight?? ???? ??? high variance
??? ????
forward-forward algorithm
- Blotzmann machine? ??? greedy multi-layer learning procedure
Forward-Forward algorithm ?? ??
1. Goodness function for one layer: Weight? ????? ? ??? objective function
2. Forward (Positive), Forward (Negative): Network procedure
forward-forward algorithm
Goodness function
constant threshold
feature
logistic function
forward-forward algorithm
Forward (positive) - Forward (negative)
1 layer
Expected Output
: Positive Input => Output > threshold
: Negative Input => Output < threshold
Input
forward-forward algorithm
Sum-up!
- ^Positive Sample ̄? forward?? network signal? ^threshold ̄ ??? response,
^Negative Sample ̄? forward?? signal? ^threshold ̄ ??? response? ?????
Negative data for Forward-Forward
Unsupervised Task
1. Create ^Random ̄ Binary Mask
2. ?? ???? ??? ??? Mask? ?? ?? sum
=> Negative Data? ???? ^characterize shape ̄? ???? ??
??
Negative data for Forward-Forward
Unsupervised Task
=> ??? ???? ???, Positive Data? MNIST? ???? Negative Data? hybrid? ???
4 layer (for each 2000 feature) ????? ?? ?? 2,3,4 layer? feature? Linear Classifier
??? ???? 1.37% error rate in MNIST? ???
- (??? backprop FC ????? 1.4%, dropout/label smoothing ?? ???? 1.1%)
- (First layer? feature? linear classifier? ???? ?? ??)
=> ????? convolution kernel? ???? Linear Classifier ?? ? 1.16% error rate in MNIST
*?? following ???? negative data? ^? ???
?? ̄?? ?? ?
Forward Positive
Forward Negative Linear
Classifier
Sample/
Hybrid
Negative data for Forward-Forward
Supervised Task
Unsupervised?? ? ??? ??? sample? ??? ??, ???? label? ?? ??? ???
+ Label ??? ^Input ̄? ??? Forward? ?!
=> ????? Label? Image ??? Correlation? ??? ??
Negative data for Forward-Forward
Supervised Task
- Supervised Task? Forward Forward? ??? ??
for i in range(num_class):
input = i Class Vector? ??? + sample
network? ?? ????? output? ?? accumulate
=> accumulated? ?? ?? ^? ̄ class? ??? class
Forward Positive
Forward Negative
Class Vector
+ Sample
=> Class? 10???,
10? Inference
???!
~ 1.36% error rate in FC with FF
~ 0.64% error rate in CNN with FF
Exp in CIFAR 10
*Network: 3 layer with 3072 ReLU each
- Compute goodness for every label: ? ????? Input
vector? ???? inference (supervised task)
- one-pass softmax: (unsupervised task)
=> min/max ssq? goodness function? minimize, maximize? ??
== network output? ^threshold ̄ ??? ?? ???, ?? ??
???
=> BP? ^overfitting ̄?? ???? ??
Pros & Cons
- Pros
~ Backprop? ???? Full derivatives? ???? ???? ?????, forward-forward? ??? ??
??? ?? ??? ???? ???
~ Trillion? ????? ???? ???? ??? watts? ????, forward-forward? ^mortal
computation ̄??? ???? ???? ?? (* hardware efficiency? ???? ?)
- Cons
~ ?? backpropagation?? ??? ???, generalize ??? ??? ???? ?? (backprop ???
???)
~ Big Model? Big Data? backpropagation? ?? ? (??? ?? ?????? ???? ? ??
???´?)
Future Works
- Negative Forward? Positive Forward?? ??
- Negative forward ?? Positive Forward? ????
- Goodness function? ?? ??? ??? ???
- ReLU ?? activation function? ??????? ???? (t-distribution ?)
- Forward-Forward? ?? ????
- ´
ref
https://medium.com/mlearning-ai/pytorch-implementation-of-forward-forward-algorithm-by-geoffre
y-hinton-and-analysis-of-performance-7e4f1a26d70f
https://www.quantamagazine.org/artificial-neural-nets-finally-yield-clues-to-how-brains-learn-2021
0218/
https://bdtechtalks.com/2022/12/19/forward-forward-algorithm-geoffrey-hinton/
https://github.com/mohammadpz/pytorch_forward_forward
https://www.cs.toronto.edu/~hinton/

More Related Content

What's hot (20)

堰霞沿艶姻看沿岳とその巓xについて
堰霞沿艶姻看沿岳とその巓xについて堰霞沿艶姻看沿岳とその巓xについて
堰霞沿艶姻看沿岳とその巓xについて
Keisuke Hosaka
?
‐猟iみ氏/Self-Attention Generative Adversarial Networks
‐猟iみ氏/Self-Attention Generative  Adversarial Networks‐猟iみ氏/Self-Attention Generative  Adversarial Networks
‐猟iみ氏/Self-Attention Generative Adversarial Networks
ARISE analytics
?
‐LTY創/ Neural Network 殆繁なんだけど採とかごC腕函りをしたい
‐LTY創/ Neural Network 殆繁なんだけど採とかごC腕函りをしたい‐LTY創/ Neural Network 殆繁なんだけど採とかごC腕函りをしたい
‐LTY創/ Neural Network 殆繁なんだけど採とかごC腕函りをしたい
Takuji Tahara
?
Generative Models┘瓮織稀`ベイ
Generative Models┘瓮織稀`ベイ Generative Models┘瓮織稀`ベイ
Generative Models┘瓮織稀`ベイ
cvpaper. challenge
?
縮なし鮫駝羪蹶F僥の嗜 {Un, Self} supervised representation learning (CVPR 2018 頼畠i篤...
縮なし鮫駝羪蹶F僥の嗜 {Un, Self} supervised representation learning (CVPR 2018 頼畠i篤...縮なし鮫駝羪蹶F僥の嗜 {Un, Self} supervised representation learning (CVPR 2018 頼畠i篤...
縮なし鮫駝羪蹶F僥の嗜 {Un, Self} supervised representation learning (CVPR 2018 頼畠i篤...
cvpaper. challenge
?
‐DLi氏/冱Z參翌でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)
‐DLi氏/冱Z參翌でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)‐DLi氏/冱Z參翌でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)
‐DLi氏/冱Z參翌でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)
Deep Learning JP
?
グラフニュ`ラルネットワ`ク秘壇
グラフニュ`ラルネットワ`ク秘壇グラフニュ`ラルネットワ`ク秘壇
グラフニュ`ラルネットワ`ク秘壇
ryosuke-kojima
?
[DLi氏]SOLAR: Deep Structured Representations for Model-Based Reinforcement L...
[DLi氏]SOLAR: Deep Structured Representations for Model-Based Reinforcement L...[DLi氏]SOLAR: Deep Structured Representations for Model-Based Reinforcement L...
[DLi氏]SOLAR: Deep Structured Representations for Model-Based Reinforcement L...
Deep Learning JP
?
Positive-Unlabeled Learning with Non-Negative Risk Estimator
Positive-Unlabeled Learning with Non-Negative Risk EstimatorPositive-Unlabeled Learning with Non-Negative Risk Estimator
Positive-Unlabeled Learning with Non-Negative Risk Estimator
Kiryo Ryuichi
?
[DLi氏]Reinforcement Learning with Deep Energy-Based Policies
[DLi氏]Reinforcement Learning with Deep Energy-Based Policies[DLi氏]Reinforcement Learning with Deep Energy-Based Policies
[DLi氏]Reinforcement Learning with Deep Energy-Based Policies
Deep Learning JP
?
SSII2020SS: グラフデ`タでも侮嗔Я ? Graph Neural Networks 秘T ?
SSII2020SS: グラフデ`タでも侮嗔Я ? Graph Neural Networks 秘T ?SSII2020SS: グラフデ`タでも侮嗔Я ? Graph Neural Networks 秘T ?
SSII2020SS: グラフデ`タでも侮嗔Я ? Graph Neural Networks 秘T ?
SSII
?
みzみニュ`ラルネットワ`クの互娼業晒と互堀晒
みzみニュ`ラルネットワ`クの互娼業晒と互堀晒みzみニュ`ラルネットワ`クの互娼業晒と互堀晒
みzみニュ`ラルネットワ`クの互娼業晒と互堀晒
Yusuke Uchida
?
Point net
Point netPoint net
Point net
Fujimoto Keisuke
?
Batch normalization effectiveness_20190206
Batch normalization effectiveness_20190206Batch normalization effectiveness_20190206
Batch normalization effectiveness_20190206
Masakazu Shinoda
?
‐DLi氏/GPT-4Technical Report
‐DLi氏/GPT-4Technical Report‐DLi氏/GPT-4Technical Report
‐DLi氏/GPT-4Technical Report
Deep Learning JP
?
[DLi氏]Few-Shot Unsupervised Image-to-Image Translation
[DLi氏]Few-Shot Unsupervised Image-to-Image Translation[DLi氏]Few-Shot Unsupervised Image-to-Image Translation
[DLi氏]Few-Shot Unsupervised Image-to-Image Translation
Deep Learning JP
?
グラフニュ`ラルネットワ`クとグラフ怏栽せ諒籾
グラフニュ`ラルネットワ`クとグラフ怏栽せ諒籾グラフニュ`ラルネットワ`クとグラフ怏栽せ諒籾
グラフニュ`ラルネットワ`クとグラフ怏栽せ諒籾
joisino
?
[DLi氏] Spectral Norm Regularization for Improving the Generalizability of De...
[DLi氏] Spectral Norm Regularization for Improving the Generalizability of De...[DLi氏] Spectral Norm Regularization for Improving the Generalizability of De...
[DLi氏] Spectral Norm Regularization for Improving the Generalizability of De...
Deep Learning JP
?
或沿岳庄馨庄噛艶姻秘壇ψ醫其
或沿岳庄馨庄噛艶姻秘壇ψ醫其或沿岳庄馨庄噛艶姻秘壇ψ醫其
或沿岳庄馨庄噛艶姻秘壇ψ醫其
Motokawa Tetsuya
?
[DLi氏] Residual Attention Network for Image Classification
[DLi氏] Residual Attention Network for Image Classification[DLi氏] Residual Attention Network for Image Classification
[DLi氏] Residual Attention Network for Image Classification
Deep Learning JP
?
堰霞沿艶姻看沿岳とその巓xについて
堰霞沿艶姻看沿岳とその巓xについて堰霞沿艶姻看沿岳とその巓xについて
堰霞沿艶姻看沿岳とその巓xについて
Keisuke Hosaka
?
‐猟iみ氏/Self-Attention Generative Adversarial Networks
‐猟iみ氏/Self-Attention Generative  Adversarial Networks‐猟iみ氏/Self-Attention Generative  Adversarial Networks
‐猟iみ氏/Self-Attention Generative Adversarial Networks
ARISE analytics
?
‐LTY創/ Neural Network 殆繁なんだけど採とかごC腕函りをしたい
‐LTY創/ Neural Network 殆繁なんだけど採とかごC腕函りをしたい‐LTY創/ Neural Network 殆繁なんだけど採とかごC腕函りをしたい
‐LTY創/ Neural Network 殆繁なんだけど採とかごC腕函りをしたい
Takuji Tahara
?
Generative Models┘瓮織稀`ベイ
Generative Models┘瓮織稀`ベイ Generative Models┘瓮織稀`ベイ
Generative Models┘瓮織稀`ベイ
cvpaper. challenge
?
縮なし鮫駝羪蹶F僥の嗜 {Un, Self} supervised representation learning (CVPR 2018 頼畠i篤...
縮なし鮫駝羪蹶F僥の嗜 {Un, Self} supervised representation learning (CVPR 2018 頼畠i篤...縮なし鮫駝羪蹶F僥の嗜 {Un, Self} supervised representation learning (CVPR 2018 頼畠i篤...
縮なし鮫駝羪蹶F僥の嗜 {Un, Self} supervised representation learning (CVPR 2018 頼畠i篤...
cvpaper. challenge
?
‐DLi氏/冱Z參翌でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)
‐DLi氏/冱Z參翌でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)‐DLi氏/冱Z參翌でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)
‐DLi氏/冱Z參翌でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)
Deep Learning JP
?
グラフニュ`ラルネットワ`ク秘壇
グラフニュ`ラルネットワ`ク秘壇グラフニュ`ラルネットワ`ク秘壇
グラフニュ`ラルネットワ`ク秘壇
ryosuke-kojima
?
[DLi氏]SOLAR: Deep Structured Representations for Model-Based Reinforcement L...
[DLi氏]SOLAR: Deep Structured Representations for Model-Based Reinforcement L...[DLi氏]SOLAR: Deep Structured Representations for Model-Based Reinforcement L...
[DLi氏]SOLAR: Deep Structured Representations for Model-Based Reinforcement L...
Deep Learning JP
?
Positive-Unlabeled Learning with Non-Negative Risk Estimator
Positive-Unlabeled Learning with Non-Negative Risk EstimatorPositive-Unlabeled Learning with Non-Negative Risk Estimator
Positive-Unlabeled Learning with Non-Negative Risk Estimator
Kiryo Ryuichi
?
[DLi氏]Reinforcement Learning with Deep Energy-Based Policies
[DLi氏]Reinforcement Learning with Deep Energy-Based Policies[DLi氏]Reinforcement Learning with Deep Energy-Based Policies
[DLi氏]Reinforcement Learning with Deep Energy-Based Policies
Deep Learning JP
?
SSII2020SS: グラフデ`タでも侮嗔Я ? Graph Neural Networks 秘T ?
SSII2020SS: グラフデ`タでも侮嗔Я ? Graph Neural Networks 秘T ?SSII2020SS: グラフデ`タでも侮嗔Я ? Graph Neural Networks 秘T ?
SSII2020SS: グラフデ`タでも侮嗔Я ? Graph Neural Networks 秘T ?
SSII
?
みzみニュ`ラルネットワ`クの互娼業晒と互堀晒
みzみニュ`ラルネットワ`クの互娼業晒と互堀晒みzみニュ`ラルネットワ`クの互娼業晒と互堀晒
みzみニュ`ラルネットワ`クの互娼業晒と互堀晒
Yusuke Uchida
?
Batch normalization effectiveness_20190206
Batch normalization effectiveness_20190206Batch normalization effectiveness_20190206
Batch normalization effectiveness_20190206
Masakazu Shinoda
?
‐DLi氏/GPT-4Technical Report
‐DLi氏/GPT-4Technical Report‐DLi氏/GPT-4Technical Report
‐DLi氏/GPT-4Technical Report
Deep Learning JP
?
[DLi氏]Few-Shot Unsupervised Image-to-Image Translation
[DLi氏]Few-Shot Unsupervised Image-to-Image Translation[DLi氏]Few-Shot Unsupervised Image-to-Image Translation
[DLi氏]Few-Shot Unsupervised Image-to-Image Translation
Deep Learning JP
?
グラフニュ`ラルネットワ`クとグラフ怏栽せ諒籾
グラフニュ`ラルネットワ`クとグラフ怏栽せ諒籾グラフニュ`ラルネットワ`クとグラフ怏栽せ諒籾
グラフニュ`ラルネットワ`クとグラフ怏栽せ諒籾
joisino
?
[DLi氏] Spectral Norm Regularization for Improving the Generalizability of De...
[DLi氏] Spectral Norm Regularization for Improving the Generalizability of De...[DLi氏] Spectral Norm Regularization for Improving the Generalizability of De...
[DLi氏] Spectral Norm Regularization for Improving the Generalizability of De...
Deep Learning JP
?
或沿岳庄馨庄噛艶姻秘壇ψ醫其
或沿岳庄馨庄噛艶姻秘壇ψ醫其或沿岳庄馨庄噛艶姻秘壇ψ醫其
或沿岳庄馨庄噛艶姻秘壇ψ醫其
Motokawa Tetsuya
?
[DLi氏] Residual Attention Network for Image Classification
[DLi氏] Residual Attention Network for Image Classification[DLi氏] Residual Attention Network for Image Classification
[DLi氏] Residual Attention Network for Image Classification
Deep Learning JP
?

Similar to Forward-Forward Algorithm (20)

1???? - ???? ?????????_ Hidden layer?? Backpropagation.pdf
1???? - ???? ?????????_ Hidden layer?? Backpropagation.pdf1???? - ???? ?????????_ Hidden layer?? Backpropagation.pdf
1???? - ???? ?????????_ Hidden layer?? Backpropagation.pdf
jyyyukk
?
??? ?? ??? ??
??? ?? ??? ????? ?? ??? ??
??? ?? ??? ??
Hee Won Park
?
ML + ?? phase 2
ML + ??  phase 2ML + ??  phase 2
ML + ?? phase 2
HoChul Shin
?
Imagination-Augmented Agents for Deep Reinforcement Learning
Imagination-Augmented Agents for Deep Reinforcement LearningImagination-Augmented Agents for Deep Reinforcement Learning
Imagination-Augmented Agents for Deep Reinforcement Learning
?? ?
?
13-DfdasdfsafdsafdasfdasfdsadfasfdsafNN.pptx
13-DfdasdfsafdsafdasfdasfdsadfasfdsafNN.pptx13-DfdasdfsafdsafdasfdasfdsadfasfdsafNN.pptx
13-DfdasdfsafdsafdasfdasfdsadfasfdsafNN.pptx
HinPhmXun1
?
[Tf2017] day4 jwkang_pub
[Tf2017] day4 jwkang_pub[Tf2017] day4 jwkang_pub
[Tf2017] day4 jwkang_pub
Jaewook. Kang
?
Nationality recognition
Nationality recognitionNationality recognition
Nationality recognition
?? ?
?
Convolutional rnn
Convolutional rnnConvolutional rnn
Convolutional rnn
Lee Gyeong Hoon
?
Coursera Machine Learning (by Andrew Ng)_????
Coursera Machine Learning (by Andrew Ng)_????Coursera Machine Learning (by Andrew Ng)_????
Coursera Machine Learning (by Andrew Ng)_????
SANG WON PARK
?
Deep learning overview
Deep learning overviewDeep learning overview
Deep learning overview
??? ???
?
Attention is all you need ??
Attention is all you need ??Attention is all you need ??
Attention is all you need ??
Junho Lee
?
Rnn keras
Rnn kerasRnn keras
Rnn keras
Park Seong Hyeon
?
[paper review] ??? - Eye in the sky & 3D human pose estimation in video with ...
[paper review] ??? - Eye in the sky & 3D human pose estimation in video with ...[paper review] ??? - Eye in the sky & 3D human pose estimation in video with ...
[paper review] ??? - Eye in the sky & 3D human pose estimation in video with ...
Gyubin Son
?
[Paper review] neural production system
[Paper review] neural production system[Paper review] neural production system
[Paper review] neural production system
Seonghoon Jung
?
Densely Connected Convolutional Networks
Densely Connected Convolutional NetworksDensely Connected Convolutional Networks
Densely Connected Convolutional Networks
Oh Yoojin
?
Workshop 210417 dhlee
Workshop 210417 dhleeWorkshop 210417 dhlee
Workshop 210417 dhlee
Dongheon Lee
?
???? ??? ??: Rainbow ???? ???? (2nd dlcat in Daejeon)
???? ??? ??: Rainbow ???? ???? (2nd dlcat in Daejeon)???? ??? ??: Rainbow ???? ???? (2nd dlcat in Daejeon)
???? ??? ??: Rainbow ???? ???? (2nd dlcat in Daejeon)
Kyunghwan Kim
?
Survey of activation functions
Survey of activation functionsSurvey of activation functions
Survey of activation functions
?? ?
?
AUTOML
AUTOMLAUTOML
AUTOML
?? ?
?
Automl
AutomlAutoml
Automl
?? ?
?
1???? - ???? ?????????_ Hidden layer?? Backpropagation.pdf
1???? - ???? ?????????_ Hidden layer?? Backpropagation.pdf1???? - ???? ?????????_ Hidden layer?? Backpropagation.pdf
1???? - ???? ?????????_ Hidden layer?? Backpropagation.pdf
jyyyukk
?
Imagination-Augmented Agents for Deep Reinforcement Learning
Imagination-Augmented Agents for Deep Reinforcement LearningImagination-Augmented Agents for Deep Reinforcement Learning
Imagination-Augmented Agents for Deep Reinforcement Learning
?? ?
?
13-DfdasdfsafdsafdasfdasfdsadfasfdsafNN.pptx
13-DfdasdfsafdsafdasfdasfdsadfasfdsafNN.pptx13-DfdasdfsafdsafdasfdasfdsadfasfdsafNN.pptx
13-DfdasdfsafdsafdasfdasfdsadfasfdsafNN.pptx
HinPhmXun1
?
[Tf2017] day4 jwkang_pub
[Tf2017] day4 jwkang_pub[Tf2017] day4 jwkang_pub
[Tf2017] day4 jwkang_pub
Jaewook. Kang
?
Nationality recognition
Nationality recognitionNationality recognition
Nationality recognition
?? ?
?
Coursera Machine Learning (by Andrew Ng)_????
Coursera Machine Learning (by Andrew Ng)_????Coursera Machine Learning (by Andrew Ng)_????
Coursera Machine Learning (by Andrew Ng)_????
SANG WON PARK
?
Deep learning overview
Deep learning overviewDeep learning overview
Deep learning overview
??? ???
?
Attention is all you need ??
Attention is all you need ??Attention is all you need ??
Attention is all you need ??
Junho Lee
?
[paper review] ??? - Eye in the sky & 3D human pose estimation in video with ...
[paper review] ??? - Eye in the sky & 3D human pose estimation in video with ...[paper review] ??? - Eye in the sky & 3D human pose estimation in video with ...
[paper review] ??? - Eye in the sky & 3D human pose estimation in video with ...
Gyubin Son
?
[Paper review] neural production system
[Paper review] neural production system[Paper review] neural production system
[Paper review] neural production system
Seonghoon Jung
?
Densely Connected Convolutional Networks
Densely Connected Convolutional NetworksDensely Connected Convolutional Networks
Densely Connected Convolutional Networks
Oh Yoojin
?
Workshop 210417 dhlee
Workshop 210417 dhleeWorkshop 210417 dhlee
Workshop 210417 dhlee
Dongheon Lee
?
???? ??? ??: Rainbow ???? ???? (2nd dlcat in Daejeon)
???? ??? ??: Rainbow ???? ???? (2nd dlcat in Daejeon)???? ??? ??: Rainbow ???? ???? (2nd dlcat in Daejeon)
???? ??? ??: Rainbow ???? ???? (2nd dlcat in Daejeon)
Kyunghwan Kim
?
Survey of activation functions
Survey of activation functionsSurvey of activation functions
Survey of activation functions
?? ?
?
AUTOML
AUTOMLAUTOML
AUTOML
?? ?
?
Automl
AutomlAutoml
Automl
?? ?
?

More from Dong Heon Cho (20)

What is Texture.pdf
What is Texture.pdfWhat is Texture.pdf
What is Texture.pdf
Dong Heon Cho
?
BADGE
BADGEBADGE
BADGE
Dong Heon Cho
?
Neural Radiance Field
Neural Radiance FieldNeural Radiance Field
Neural Radiance Field
Dong Heon Cho
?
2020 > Self supervised learning
2020 > Self supervised learning2020 > Self supervised learning
2020 > Self supervised learning
Dong Heon Cho
?
All about that pooling
All about that poolingAll about that pooling
All about that pooling
Dong Heon Cho
?
Background elimination review
Background elimination reviewBackground elimination review
Background elimination review
Dong Heon Cho
?
Transparent Latent GAN
Transparent Latent GANTransparent Latent GAN
Transparent Latent GAN
Dong Heon Cho
?
Image matting atoc
Image matting atocImage matting atoc
Image matting atoc
Dong Heon Cho
?
Multi object Deep reinforcement learning
Multi object Deep reinforcement learningMulti object Deep reinforcement learning
Multi object Deep reinforcement learning
Dong Heon Cho
?
Multi agent reinforcement learning for sequential social dilemmas
Multi agent reinforcement learning for sequential social dilemmasMulti agent reinforcement learning for sequential social dilemmas
Multi agent reinforcement learning for sequential social dilemmas
Dong Heon Cho
?
Multi agent System
Multi agent SystemMulti agent System
Multi agent System
Dong Heon Cho
?
Hybrid reward architecture
Hybrid reward architectureHybrid reward architecture
Hybrid reward architecture
Dong Heon Cho
?
Use Jupyter notebook guide in 5 minutes
Use Jupyter notebook guide in 5 minutesUse Jupyter notebook guide in 5 minutes
Use Jupyter notebook guide in 5 minutes
Dong Heon Cho
?
AlexNet and so on...
AlexNet and so on...AlexNet and so on...
AlexNet and so on...
Dong Heon Cho
?
Deep Learning AtoC with Image Perspective
Deep Learning AtoC with Image PerspectiveDeep Learning AtoC with Image Perspective
Deep Learning AtoC with Image Perspective
Dong Heon Cho
?
LOL win prediction
LOL win predictionLOL win prediction
LOL win prediction
Dong Heon Cho
?
How can we train with few data
How can we train with few dataHow can we train with few data
How can we train with few data
Dong Heon Cho
?
Domain adaptation gan
Domain adaptation ganDomain adaptation gan
Domain adaptation gan
Dong Heon Cho
?
Dense sparse-dense training for dnn and Other Models
Dense sparse-dense training for dnn and Other ModelsDense sparse-dense training for dnn and Other Models
Dense sparse-dense training for dnn and Other Models
Dong Heon Cho
?
Squeeeze models
Squeeeze modelsSqueeeze models
Squeeeze models
Dong Heon Cho
?
2020 > Self supervised learning
2020 > Self supervised learning2020 > Self supervised learning
2020 > Self supervised learning
Dong Heon Cho
?
Background elimination review
Background elimination reviewBackground elimination review
Background elimination review
Dong Heon Cho
?
Multi object Deep reinforcement learning
Multi object Deep reinforcement learningMulti object Deep reinforcement learning
Multi object Deep reinforcement learning
Dong Heon Cho
?
Multi agent reinforcement learning for sequential social dilemmas
Multi agent reinforcement learning for sequential social dilemmasMulti agent reinforcement learning for sequential social dilemmas
Multi agent reinforcement learning for sequential social dilemmas
Dong Heon Cho
?
Hybrid reward architecture
Hybrid reward architectureHybrid reward architecture
Hybrid reward architecture
Dong Heon Cho
?
Use Jupyter notebook guide in 5 minutes
Use Jupyter notebook guide in 5 minutesUse Jupyter notebook guide in 5 minutes
Use Jupyter notebook guide in 5 minutes
Dong Heon Cho
?
Deep Learning AtoC with Image Perspective
Deep Learning AtoC with Image PerspectiveDeep Learning AtoC with Image Perspective
Deep Learning AtoC with Image Perspective
Dong Heon Cho
?
How can we train with few data
How can we train with few dataHow can we train with few data
How can we train with few data
Dong Heon Cho
?
Dense sparse-dense training for dnn and Other Models
Dense sparse-dense training for dnn and Other ModelsDense sparse-dense training for dnn and Other Models
Dense sparse-dense training for dnn and Other Models
Dong Heon Cho
?

Forward-Forward Algorithm

  • 1. What is wrong with backpropagation The Forward-Forward Algorithm: Some Preliminary Investigations Neurips 2022
  • 2. What is wrong with backpropagation > Biological Perspective - Error derivative propagation? ???, neural activity?? ???? ??? cortex?? ??? ? ?? => ??? ^later time step ̄?? ????? ?? ???, real-time? ???? ????? ?? ?? > Computational Perspective - backpropagation? ^?? forward pass ̄? derivative? ??? ? ??? ? (ex. rnn ???? ? ?? sequence? recurring?? ??? ????? ? ??) => ??? ??? reinforcement learning? ? ? random weight?? ???? ??? high variance ??? ????
  • 3. forward-forward algorithm - Blotzmann machine? ??? greedy multi-layer learning procedure Forward-Forward algorithm ?? ?? 1. Goodness function for one layer: Weight? ????? ? ??? objective function 2. Forward (Positive), Forward (Negative): Network procedure
  • 4. forward-forward algorithm Goodness function constant threshold feature logistic function
  • 5. forward-forward algorithm Forward (positive) - Forward (negative) 1 layer Expected Output : Positive Input => Output > threshold : Negative Input => Output < threshold Input
  • 6. forward-forward algorithm Sum-up! - ^Positive Sample ̄? forward?? network signal? ^threshold ̄ ??? response, ^Negative Sample ̄? forward?? signal? ^threshold ̄ ??? response? ?????
  • 7. Negative data for Forward-Forward Unsupervised Task 1. Create ^Random ̄ Binary Mask 2. ?? ???? ??? ??? Mask? ?? ?? sum => Negative Data? ???? ^characterize shape ̄? ???? ?? ??
  • 8. Negative data for Forward-Forward Unsupervised Task => ??? ???? ???, Positive Data? MNIST? ???? Negative Data? hybrid? ??? 4 layer (for each 2000 feature) ????? ?? ?? 2,3,4 layer? feature? Linear Classifier ??? ???? 1.37% error rate in MNIST? ??? - (??? backprop FC ????? 1.4%, dropout/label smoothing ?? ???? 1.1%) - (First layer? feature? linear classifier? ???? ?? ??) => ????? convolution kernel? ???? Linear Classifier ?? ? 1.16% error rate in MNIST *?? following ???? negative data? ^? ??? ?? ̄?? ?? ? Forward Positive Forward Negative Linear Classifier Sample/ Hybrid
  • 9. Negative data for Forward-Forward Supervised Task Unsupervised?? ? ??? ??? sample? ??? ??, ???? label? ?? ??? ??? + Label ??? ^Input ̄? ??? Forward? ?! => ????? Label? Image ??? Correlation? ??? ??
  • 10. Negative data for Forward-Forward Supervised Task - Supervised Task? Forward Forward? ??? ?? for i in range(num_class): input = i Class Vector? ??? + sample network? ?? ????? output? ?? accumulate => accumulated? ?? ?? ^? ̄ class? ??? class Forward Positive Forward Negative Class Vector + Sample => Class? 10???, 10? Inference ???! ~ 1.36% error rate in FC with FF ~ 0.64% error rate in CNN with FF
  • 11. Exp in CIFAR 10 *Network: 3 layer with 3072 ReLU each - Compute goodness for every label: ? ????? Input vector? ???? inference (supervised task) - one-pass softmax: (unsupervised task) => min/max ssq? goodness function? minimize, maximize? ?? == network output? ^threshold ̄ ??? ?? ???, ?? ?? ??? => BP? ^overfitting ̄?? ???? ??
  • 12. Pros & Cons - Pros ~ Backprop? ???? Full derivatives? ???? ???? ?????, forward-forward? ??? ?? ??? ?? ??? ???? ??? ~ Trillion? ????? ???? ???? ??? watts? ????, forward-forward? ^mortal computation ̄??? ???? ???? ?? (* hardware efficiency? ???? ?) - Cons ~ ?? backpropagation?? ??? ???, generalize ??? ??? ???? ?? (backprop ??? ???) ~ Big Model? Big Data? backpropagation? ?? ? (??? ?? ?????? ???? ? ?? ???´?)
  • 13. Future Works - Negative Forward? Positive Forward?? ?? - Negative forward ?? Positive Forward? ???? - Goodness function? ?? ??? ??? ??? - ReLU ?? activation function? ??????? ???? (t-distribution ?) - Forward-Forward? ?? ???? - ´