狠狠撸

狠狠撸Share a Scribd company logo
外国語教育研究における
を用いた統計処理入門
川口 勇作
愛知学院大学 教養部
ykawa@dpc.agu.ac.jp
FLEAT VII ワークショップ@早稲田大学
2019/8/6
自己紹介
? 川口 勇作 (KAWAGUCHI Yusaku)
–所属: 愛知学院大学 教養部
? 教養科目の英語授業などを担当しています
–専門: 外国語教育学
? コンピュータを用いた英語教育?学習
–Nagoya.R 主催
–R歴:約7年
この講習について
? 目的
–Rを用いた、外国語教育研究における統計処理の手法を
習得すること
? 内容
–R の(必要最小限の)操作方法の導入
–外国語教育研究においてよく用いられる分析方法の実
習
この講習で扱うもの?扱わないもの
○ 扱うもの
? 最低限のRの仕様?操作
? 记述统计量の算出方法
? よく用いられる各種検定?分析の
実行方法と算出方法、结果の见方
– t 検定
– 分散分析
– 効果量の算出
– 相関分析
– 回帰分析
? 扱わないもの
? 細かいRの仕様?操作
? よく用いられる各種検定?分析の
詳細な説明
? 高度な統計分析
– ベイズ統計、一般化線形混合効果モ
デル、構造方程式モデリング、項目
反応理論、などなど
? 文字列処理?コーパス分析
? データハンドリング?管理
導入編
? Rの基本操作
? 変数?関数
? ベクトルと行列
? データの読み込み
? パッケージのインストール?読み込み
とは
? 統計処理のためのプログラミング言語で、無償+
オープンソースのソフトウェア
? 無償の追加機能(パッケージ)をインストールするこ
とで、外国語教育研究で用いられる多くの統計処理
が可能
スクリプト編集画面
データ確認画面
コンソール
コードを選択して
F5キーを押すと
コンソールで実行されます
Windows ユーザーの方へ
? ユーザー名(ユーザーフォルダ名)に、2バイト文字
(漢字?ひらがな?カタカナ)が含まれていないか確認
–後々不具合が発生するおそれがある
? 対策
–ユーザー名を英数字のみに変更する
–R使用時専用の、名前が英数字のみのユーザーを新規作
成する
RStudio
? Rのための統合開発環境(IDE)
? Rがより使いやすくなります(詳細は割愛)
? 特別な事情がない限りはぜひインストールを
? https://www.rstudio.com/products/rstud
io/download/
スクリプト編集画面
データ確認画面
コンソール
変数一覧
履歴
ファイル一覧
作図スペース
パッケージ
ヘルプ
コードを選択して
Shift + Enterを押すと
コンソールで実行されます
の基本操作
以下 > から始まる式を
コンソールに 入力してください
> は入力不要です
#から始まる部分はコメント行なので、
入力不要です
R version 3.0.1 (2013-05-16) -- "Good Sport"
Copyright (C) 2013 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R は、自由なソフトウェアであり、「完全に無保証」です。
一定の条件に従えば、自由にこれを再配布することができます。
配布条件の詳細に関しては、'license()' あるいは 'licence()' と入力してください。
R は多くの貢献者による共同プロジェクトです。
詳しくは 'contributors()' と入力してください。
また、R や R のパッケージを出版物で引用する際の形式については
'citation()' と入力してください。
'demo()' と入力すればデモをみることができます。
'help()' とすればオンラインヘルプが出ます。
'help.start()' で HTML ブラウザによるヘルプがみられます。
'q()' と入力すれば R を終了します。
>|
← ここから入力
入力している部分は赤く表示されます
命令の入力方法
? 命令を入力して、 Enter を押す
? 四則演算をしてみましょう
> 3+5
> 10-3
> 2*3
> 100/20
8
7
6
5
便利な機能
? 履歴機能
–矢印キーの上下(↑↓)を押すと、今まで入力した命令を
遡って呼び出すことができる
? 補完機能
–関数や変数、パッケージ名(後述)の一部を入力してTab
キーを押すと、一番それっぽいものを提案してくれる
R基本操作 まとめ
? 命令を打ち込んでEnter、それだけ
? 過去に入力したものは、履歴機能で呼び出すと楽
? 入力の途中でTabを押すと楽ができる(かも)
変数を使う
変数とは
? 1つ以上のデータをまとめて入れておく「箱」のよう
なもの
? 変数に数値を入れることを「代入」という
? 統計処理を行う際には、複数のデータをまとめて扱
うことが多いため、変数を用いてデータをまとめる
ことが重要
変数に データを 代入する
? 変数の名前を書き、- と > で矢印を作る
? 右辺には、変数に入れたいデータを記入する
> # hakoという名の変数に 5 という数字を代入する
> hako <- 5
> # hakoという名の変数の中身を確認
> hako
[1] 5
変数の名前
? どのような名前でもOK
–2バイト文字も使用できるが、変換が面倒なので使わな
い
? 後で見返したときに、どんなデータが入っているか
わかるような名前をつける
? 既存の変数にデータを代入すると、
新しいデータで上書きされる
> hako <- 5
> hako <- 10
> hako
[1] 10
変数に データを 代入する
1. 変数の名前を ”hako” とする
2. c関数で、値を1つにまとめる
– このまとまりをベクトルと呼ぶ
3. まとめた値を ”hako” という変数に代入する
<- は矢印を表現
4. 代入したら中身を確認する
> hako <- c(1, 2, 3, 4, 5)
> hako
入力中に「+」が出たら
? 入力途中に Enter キーを押すと、待機状態を示す
「+」が出る
–そのまま入力を続けても問題ない
–気になる人は、 ボタン、もしくは Escキーで入力を
キャンセル
> hako <- c(
+
関数を使う
関数とは
? 指定した値(引数)に対して、何らかの処理をして結
果を出すしくみ
–引数は、関数名の後ろの()の中に入る
–英語の文法に例えると、関数は他動詞、引数は目的語
–引数(目的語)を複数とる関数もある
? 統計分析では必ず関数を使うため、使い方に慣れて
おく必要がある
平方根を算出
? sqrt という関数を使用
( sqrt = square root )
> sqrt(2)
1.414214
> sqrt(144)
12
> sqrt(104976)
324
平方根を一気に
> hako <- c(1, 2, 3, 4, 5)
> sqrt(hako)
[1] 1.000000 1.414214 1.732051 2.000000
[5] 2.236068
変数を使うとこんなに楽
使った場合
> sqrt(hako)
使わない場合
> sqrt(1)
> sqrt(2)
> sqrt(3)
> sqrt(4)
> sqrt(5)
変数と関数 まとめ
? 変数を使って、複数のデータをまとめて扱う
? 関数で、変数の中の値を一気に処理
? 統計分析を行う際には、変数でデータをまとめて、統
計分析用の関数で処理
ベクトルと行列
ベクトルとは
? 数値が一列に並べられたもの
–全員の勉強時間
–全員のテスト得点
–全員の覚えている単語の数
行列とは
? ベクトルを縦横に並べたもの
–全員の勉強時間とテストの得点
–全員の勉強時間と覚えている単語の数
外国语教育研究における搁を用いた统计処理入门
1 2 3
4 5 6
7 8 9
外国语教育研究における搁を用いた统计処理入门
1 2 3
4 5 6
7 8 9
行列の要素を取り出す
? 行列の中から、ベクトルとして取り出したい行や列を
指定
–行を取り出す:変数名[行番号,]
–列を取り出す:変数名[,列番号]
> #2列目を取り出す場合
> 変数名[,2]
[1] 2 5 8
> #2行目を取り出す場合
> 変数名[2,]
[1] 4 5 6
イメージ
[,1] [,2] [,3] [,4] [,5]
[1,]
[2,]
[3,]
[4,]
[5,]
ベクトルと行列 まとめ
? ベクトル
–数字や文字の列
? 行列
–ベクトルを縦横に並べたもの
–横方向が行、縦方向が列
–行列から必要な要素を取り出すには、変数名[行番号,列
番号]
データの読み込み
データ読み込み
? 下準備
–getwd関数で、現在の作業ディレクトリの場所を確認
? 作業ディレクトリ:データを読み込みたいファイルを置く場所
–その作業ディレクトリに、配布したcsvファイルを移動し
てください
> getwd()
[1] "C:/Users/yusaku/Documents"
データ読み込み
? read.csv関数
–データフレーム形式のカンマ区切りデータを読み込む
–1つ目の引数を"ファイル名"とする
? ファイル名には、拡張子(.csv)を含める
> read.csv("ファイル名", header = T)
データ読み込み
? read.csv関数
–2つ目の引数(header)で見出し行(1行目にある項目名
などの書かれた行)の有無を指定
? Tなら1行目を見出し行として読み込み
? Fなら1行目をデータ行として読み込み
> # 見出し行がある場合
> read.csv("ファイル名", header = T)
> # 見出し行がない場合
> read.csv("ファイル名", header = F)
データ読み込み
? 読み込んだデータを分析に使う場合は、必ず変数に
代入する
–読み込むだけでは、コンソールにデータの中身が表示さ
れるだけで、分析できる状態で残らない
> # 読み込んだデータを、 datという変数に代入する
> dat <- read.csv("ファイル名", header = T)
演習
? 見出し行のあるテストのデータを、csvファイル
(test.csv)から読み込んで、「dat」という名前の変
数に代入してみましょう
> dat <- read.csv(“test.csv", header=T)
データ読み込み まとめ
? Rにデータを読み込む際は、
–データはcsv形式で用意
? 管理もしやすい
? 配布?公開もしやすい
–作業ディレクトリにcsvファイルを移動したら、
read.csv関数で読み込み
–見出し行の有無は、headerオプションで指定
パッケージを使う
パッケージとは
? パッケージとは、便利な機能?関数がまとめられてい
るもの
? Rにデフォルトで入っているパッケージだけでも色々
できる
? デフォルトで入っていない関数を使うためには、パッ
ケージを追加する必要がある
パッケージのインストール
? メニューを使ってインストールする
–Rのメニューの中の「パッケージ」> 「パッケージのインス
トール」> ほしいパッケージを選択
–簡単だが、複数のパッケージをインストールする場合、何
度もクリックする手間がかかる
パッケージのインストール
? パッケージをインストールする関数
–install.packages("ほしいパッケージ名")
? " "で囲むことを忘れないように
? インストールできたらlibrary 関数で読み込む
–library(読み込みたいパッケージ名)
> install.packages("psych")
> library(psych)
パッケージ まとめ
? パッケージは、
–install.packages 関数でインストール
–library関数で読み込み
记述统计量の算出
記述(要約)統計量とは
? 標本の分布の特徴を要約して記述する値
? 標本の各変数について平均値?分散を求めたり、度
数分布を調べたり、2変数間の相関関係を示す散布
図を描いたりする。相関係数を求めたり、クロス集計
表を作成することもこれに含まれる (青木, 2002)
記述統計量を算出する関数一覧
? データの個数 length ? 最大値 max
? 平均値 mean ? 最小値 min
? 中央値 median ? 標準偏差 sd
記述統計
? summary関数
–平均値?第1四分位?中央値?第3四分位?最小値を算出で
きる
? 事前テストの得点の記述統計をsummary関数で算
出してみましょう
> summary(dat$pre)
記述統計
? 歪度(skewness)?尖度(kurtosis)
–分布の偏り具合?尖り具合
–デフォルトではこれらを算出できる関数が用意されてい
ない
–以下のパッケージ?関数を用いて、歪度?尖度を算出可能
? e1071パッケージのskewness関数?kurtosis関数
? 辫蝉测肠丑パッケージの蝉办别飞関数?办耻谤迟関数
記述統計
? psychパッケージのdescribe関数を用いて記述統
計を一通り算出できる
> install.packages(“psych”)
> library(psych)
> describe(dat)
结果の见方
ヒストグラムの作成
? hist関数でヒストグラム(度数分布図)を描き、事前テス
ト/事後テストの分布を観察する
–さきほどの練習で作った変数 test のデータを使う
> hist(dat[,1]) #事前テストのヒストグラム
> hist(dat[,2]) #事後テストのヒストグラム
2つのヒストグラム
事前テストの分布 事後テストの分布
Histogram of dat[, 1]
dat[, 1]
Frequency
30 40 50 60 70 80 90
0510152025
Histogram of dat[, 2]
dat[, 2]
Frequency
30 40 50 60 70 80 90
05101520
箱ひげ図の作成
? boxplot関数で箱ひげ図(box plot)を作成
–事前テスト?事後テストの分布を、箱ひげ図を観察して比
較しましょう
> boxplot(dat)
箱ひげ図
最大値
中央値
最小値
第1四分位点
第3四分位点
蜂群図を箱ひげ図に重ねる
? 蜂群図(beeswarm plot)を箱ひげ図に重ね描きして、
一人ひとりのばらつきを把握する
–beeswarmパッケージのbeeswarm関数を使用
–さっき描いた箱ひげ図はそのままで以下のコードを入力
> beeswarm(dat, add = T) # addは重ね描きをするオプション
と、その前に
? beeswarm関数はそのままでは使えない
–Rにはもともと入っていない関数だから
–まず、beeswarm関数が含まれている、beeswarm
パッケージをインストールし、読み込まないといけない
> install.packages("beeswarm")
> library(beeswarm)
> beeswarm(dat, add = T) #addは重ね描きをするオプション
箱ひげ図&蜂群図
t 検定
2つの変数の平均値の差をみる
こんなときに使う
? それぞれ異なる学習方略で学習した、2つのグルー
プのテストの平均得点の間に統計的に有意な差があ
るか確かめたい
→対応なし(繰り返しなし)のt 検定
? 学習者グループの、ある学習方略で学習する前と後
のテストの平均得点の間に、統計的に有意な差があ
るか確かめたい
→対応あり(繰り返しあり)のt 検定
その前に
? 分析の前提条件を満たしているか確認(本日は割愛)
– データが名義尺度ではないか
– データが正規分布しているか
– 標本サイズに偏りがないか
? 記述統計量、特に平均、標準偏差、尖度?歪度は確認した
か
? ヒストグラムや箱ひげ図を確認したか
? 最低限、これらを行ってから分析に移りましょう
やってみよう
? 事前テストと事後テストの得点を比較する
–同じ人が2回テストを受けている →対応ありt 検定
? t.test関数を使う
–引数1:事前テストのデータ
–引数2:事後テストのデータ
–pairedオプションで対応あり/なしを選ぶ(T:あり)
> t.test(dat$pre, dat$post, paired = T)
やってみよう
? 事前テストと事後テストの間の効果量を算出する
? t 検定の場合は、Cohen’s d と呼ばれる効果量を
用いる
–effsizeパッケージのcohen.d関数でd が算出できる
> install.packages(“effsize”)
> library(effsize)
> cohen.d(dat$pre, dat$post)
结果の见方
? t 値、自由度(df )、p 値を読み取る
? t 値の小数第3位以降は不要なので四捨五入
? p 値は紙面の許す限り、少数第2, 3位までの
正確な値を報告(APA, 2010)
? .001を下回る場合はp < .001でよい
? 効果量も後ろに付記する
本文中での報告例
t (62) = -5.29, p < .001, d = 0.91
一元配置分散分析
3つ以上の変数の平均値の差をみる
こんなときに使う
? それぞれ異なる学習方略で学習した、3つのグループの
テストの平均得点の間に統計的に有意な差があるか確か
めたい
→被験者間計画(対応なし?繰り返しなし)の一元配置分散分析
? 学習者グループの、ある学習方略で学習する前と後、そ
のさらに後の3つのテストの平均得点の間に、統計的に
有意な差があるか確かめたい
→被験者内計画(対応あり?繰り返しあり)の一元配置分散分析
やってみよう
? 事前テストと事後テストと遅延事後テストの得点を
比較する
–同じ人が3回テストを受けている →被験者内計画
? ANOVA君を使う
–井関龍太先生(大正大学)が作成された、分散分析用関数
–多重比較、効果量の算出も一度にでき、非常に便利
> source("anovakun_483.txt")
> source("anovakun_483.txt", encoding = 'CP932')
# Mac/Linuxの方はこちら
やってみよう
? anovakun関数を使う
– 引数1:データ
– 引数2:要因計画
? “sA”:被験者内計画(今回はこれ)
? “As”:被験者間計画
– 引数3:要因の水準数
? 今回は事前?事後?遅延の3水準
– holmオプションをTにし、多重比較の方法をHolm法に
– etaオプションをTにし、効果量(イータ二乗)を算出
> anovakun(oneway, “sA”, 3, holm = T, eta = T)
结果の见方
结果の见方
? F 値、自由度(df )、p 値を読み取る
? 自由度は、要因のもの(A)と誤差(s x A)
のものをピックアップする
? F 値の小数第3位以降は不要なので四捨五入
? 多重比較の結果を確認し、報告(t 検定と同様)
本文中での報告例
F (2, 98) = 43.64, p < .001, η2 = 0.39
二元配置分散分析
2つの要因とその水準間の平均値の差をみる
こんなときに使う
? 2種類の指導方法と2種類の教室環境で学習した4つの異なる
学習者グループのテストの平均得点の間に統計的に有意な差が
あるか確かめたい
→被験者間計画(対応なし?繰り返しなし)の二元配置分散分析
? 1つの学習者グループを、2種類の指導法で指導し、2種類の教
室環境で学習したとき、テストの平均得点の間に統計的に有意な
差があるか確かめたい
→被験者内計画(対応あり?繰り返しあり)の二元配置分散分析
? 2つの学習者グループを、それぞれ異なる指導法で指導し、その
前と後の2つのテストの平均得点の間に、統計的に有意な差があ
るか確かめたい
→被験者内?被験者間混合計画の二元配置分散分析
やってみよう
? 協同学習ベースと個別学習ベースの授業をおこなっ
た2つの学習者グループの、事前テストと事後テスト
の得点を比較する
–同じ人が2回テストを受けている →被験者内計画
–学習方法(学習者グループ)は2つ →被験者間計画
? ANOVA君を使う
> source("anovakun_483.txt")
> source("anovakun_483.txt", encoding = 'CP932')
# Mac/Linuxの方はこちら
やってみよう
? anovakun関数を使う
– 引数1:データ
– 引数2:要因計画
? “sAB”:被験者内計画
? “AsB”:被験者内?被験者間混合計画(今回はこれ)
? “ABs”:被験者間計画
– 引数3, 4:1つ目?2つ目の要因の水準数
? 今回は協同学習G?個別学習Gの2水準と事前?事後の2水準
– holmオプションをTにし、多重比較の方法をHolm法に
– petaオプション(etaではない)をTにし、効果量(偏イータ二乗)を算出
> anovakun(twoway, “AsB”, 2, 2, holm = T, peta = T)
结果の见方
结果の见方
? 交互作用が有意
? 単純主効果の分析へ
本文中での報告例
F (1, 90) = 15.40, p < .001, η2
partial = 0.14
结果の见方
相関
2つの変数間の関係をみる
こんなときに使う
? リーディングテストと語彙テストの得点との間に、ど
のような関係(=片方が大きいとき、もう片方がどう変化するか)
があるかを明らかにしたい
? 動機づけの質問紙調査の結果(数値)と、学習方略の
質問紙調査の結果(数値)との間にどのような関係
があるかを明らかにしたい
散布図
? 散布図を作成して、相関関係を観察
–csvファイル「toeic.csv」を読み込んで、「toeic」という
変数に代入
–plot関数で、散布図を描画して、TOEICスコアと英作文
の語数の相関関係を観察しましょう
> toeic <- read.csv("toeic.csv", header=T)
> plot(toeic$score, toeic$words)
300 400 500 600 700 800 900 1000
150200250300350
toeic$score
toeic$words
相関係数
? 2つの変数の相関関係の強さを0~1の間で数量的
に表現
–ピアソンの積率相関係数
? データが正規分布していたり、間隔尺度以上のときに使用
–スピアマンの順位相関係数?ケンドールの順位相関係数
? データが正规分布していなかったり、顺序尺度のときに使用
やってみよう
? 変数「toeic」の中の、TOEICスコアと英作文の語数
とのピアソンの積率相関係数を算出する
> # 相関係数の算出
> cor(toeic$score, toeic$words, method = “pearson")
> # 相関係数、p値、信頼区間の算出
> cor.test(toeic, method = “pearson")
回帰分析
ひとつの変数から、ひとつの変数を予測する
こんなときに使う
? 語彙テストの得点からTOEICの得点を予測する
→単回帰分析
–従属変数 = a + b × 独立変数
? 読解力?聴解力?語彙力のうち、TOEICの得点を
もっとも予測するものはどれか明らかにする
→重回帰分析
–従属変数 = a + b1 × 独立変数1 + b2 × 独立変数2
+ b3 × 独立変数3 + ... + bn × 独立変数n +
やってみよう
? 単回帰分析で、読解テストの得点からTOEICの得点
を予測する
> res1 <- lm(kaiki$toeic ~ kaiki$read)
> summary(res1)
结果の见方 ? 導かれる回帰式:
TOEIC得点の予測値 = 149.12 + 4.81 × 読
解テストの得点
? 決定係数 0.24、自由度調整済み決定係数0.22
TOEIC得点の分散の22~24%が説明されてい
る
やってみよう
? 重回帰分析で、読解テストの得点、聴解テストの得点、
ごテストの得点のうち、最もTOEICの得点を予測す
るものはどれかを明らかにする
> res2 <- lm(kaiki$toeic ~ kaiki$read + kaiki$listen + kai
ki$vocab)
> summary(res2)
结果の见方
? 導かれる回帰式:
TOEIC得点の予測値 = 89.43 + 2.29 × 読
解テストの得点 + 3.14 × 聴解テストの得点 +
1.51 × 語彙テストの得点
? 偏回帰係数が有意だったのは聴解テストのみ
→TOEIC得点を最も予測するものは聴解テスト
? 決定係数 0.34、自由度調整済み決定係数0.31
TOEIC得点の分散の約30%が説明されている
より深くRを学びたくなった方へ
? 日本全国にあるRコミュニティにどうぞ
? Japan.R
? Tokyo.R
? SappoRo.R
? Nagoya.R
? Kobe.R
? HiRoshima.R
? Fukuoka.R
外国語教育研究における
を用いた統計処理入門
連絡先: 川口 勇作(愛知学院大学 教養部)
ykawa@dpc.agu.ac.jp
https://y-kawaguchi.com

More Related Content

What's hot (20)

社会心理学と骋濒尘尘
社会心理学と骋濒尘尘社会心理学と骋濒尘尘
社会心理学と骋濒尘尘
Hiroshi Shimizu
?
质的変数の相関?因子分析
质的変数の相関?因子分析质的変数の相関?因子分析
质的変数の相関?因子分析
Mitsuo Shimohata
?
心理学者のための骋濒尘尘?阶层ベイズ
心理学者のための骋濒尘尘?阶层ベイズ心理学者のための骋濒尘尘?阶层ベイズ
心理学者のための骋濒尘尘?阶层ベイズ
Hiroshi Shimizu
?
マルチレベルモデル講習会 理論編
マルチレベルモデル講習会 理論編マルチレベルモデル講習会 理論編
マルチレベルモデル講習会 理論編
Hiroshi Shimizu
?
エクセルで統計分析 統計プログラムHADについて
エクセルで統計分析 統計プログラムHADについてエクセルで統計分析 統計プログラムHADについて
エクセルで統計分析 統計プログラムHADについて
Hiroshi Shimizu
?
厂迟补苍コードの书き方 中级编
厂迟补苍コードの书き方 中级编厂迟补苍コードの书き方 中级编
厂迟补苍コードの书き方 中级编
Hiroshi Shimizu
?
マルチレベルモデル講習会 実践編
マルチレベルモデル講習会 実践編マルチレベルモデル講習会 実践編
マルチレベルモデル講習会 実践編
Hiroshi Shimizu
?
项目反応理论による尺度运用
项目反応理论による尺度运用项目反応理论による尺度运用
项目反応理论による尺度运用
Yoshitake Takebayashi
?
谤蝉迟补苍で简単に骋尝惭惭ができる驳濒尘尘蝉迟补苍()を作ってみた
谤蝉迟补苍で简単に骋尝惭惭ができる驳濒尘尘蝉迟补苍()を作ってみた谤蝉迟补苍で简単に骋尝惭惭ができる驳濒尘尘蝉迟补苍()を作ってみた
谤蝉迟补苍で简単に骋尝惭惭ができる驳濒尘尘蝉迟补苍()を作ってみた
Hiroshi Shimizu
?
厂迟补苍超初心者入门
厂迟补苍超初心者入门厂迟补苍超初心者入门
厂迟补苍超初心者入门
Hiroshi Shimizu
?
スパース推定法による统计モデリング(入门)
スパース推定法による统计モデリング(入门)スパース推定法による统计モデリング(入门)
スパース推定法による统计モデリング(入门)
Hidetoshi Matsui
?
「倾向スコア分析」 报告事例
「倾向スコア分析」 报告事例「倾向スコア分析」 报告事例
「倾向スコア分析」 报告事例
Sayuri Shimizu
?
搁によるやさしい统计学第20章「検定力分析によるサンプルサイズの决定」
搁によるやさしい统计学第20章「検定力分析によるサンプルサイズの决定」搁によるやさしい统计学第20章「検定力分析によるサンプルサイズの决定」
搁によるやさしい统计学第20章「検定力分析によるサンプルサイズの决定」
Takashi J OZAKI
?
潜在クラス分析
潜在クラス分析潜在クラス分析
潜在クラス分析
Yoshitake Takebayashi
?
搁と厂迟补苍で分散分析
搁と厂迟补苍で分散分析搁と厂迟补苍で分散分析
搁と厂迟补苍で分散分析
人斬り 抜刀斎
?
Chapter9 一歩進んだ文法(前半)
Chapter9 一歩進んだ文法(前半)Chapter9 一歩進んだ文法(前半)
Chapter9 一歩進んだ文法(前半)
itoyan110
?
2 4.devianceと尤度比検定
2 4.devianceと尤度比検定2 4.devianceと尤度比検定
2 4.devianceと尤度比検定
logics-of-blue
?
倾向スコア:その概念と搁による実装
倾向スコア:その概念と搁による実装倾向スコア:その概念と搁による実装
倾向スコア:その概念と搁による実装
takehikoihayashi
?
エクセルで統計分析4 因子分析のやり方
エクセルで統計分析4 因子分析のやり方エクセルで統計分析4 因子分析のやり方
エクセルで統計分析4 因子分析のやり方
Hiroshi Shimizu
?
因果探索: 観察データから 因果仮説を探索する
因果探索: 観察データから因果仮説を探索する因果探索: 観察データから因果仮説を探索する
因果探索: 観察データから 因果仮説を探索する
Shiga University, RIKEN
?
社会心理学と骋濒尘尘
社会心理学と骋濒尘尘社会心理学と骋濒尘尘
社会心理学と骋濒尘尘
Hiroshi Shimizu
?
质的変数の相関?因子分析
质的変数の相関?因子分析质的変数の相関?因子分析
质的変数の相関?因子分析
Mitsuo Shimohata
?
心理学者のための骋濒尘尘?阶层ベイズ
心理学者のための骋濒尘尘?阶层ベイズ心理学者のための骋濒尘尘?阶层ベイズ
心理学者のための骋濒尘尘?阶层ベイズ
Hiroshi Shimizu
?
マルチレベルモデル講習会 理論編
マルチレベルモデル講習会 理論編マルチレベルモデル講習会 理論編
マルチレベルモデル講習会 理論編
Hiroshi Shimizu
?
エクセルで統計分析 統計プログラムHADについて
エクセルで統計分析 統計プログラムHADについてエクセルで統計分析 統計プログラムHADについて
エクセルで統計分析 統計プログラムHADについて
Hiroshi Shimizu
?
厂迟补苍コードの书き方 中级编
厂迟补苍コードの书き方 中级编厂迟补苍コードの书き方 中级编
厂迟补苍コードの书き方 中级编
Hiroshi Shimizu
?
マルチレベルモデル講習会 実践編
マルチレベルモデル講習会 実践編マルチレベルモデル講習会 実践編
マルチレベルモデル講習会 実践編
Hiroshi Shimizu
?
项目反応理论による尺度运用
项目反応理论による尺度运用项目反応理论による尺度运用
项目反応理论による尺度运用
Yoshitake Takebayashi
?
谤蝉迟补苍で简単に骋尝惭惭ができる驳濒尘尘蝉迟补苍()を作ってみた
谤蝉迟补苍で简単に骋尝惭惭ができる驳濒尘尘蝉迟补苍()を作ってみた谤蝉迟补苍で简単に骋尝惭惭ができる驳濒尘尘蝉迟补苍()を作ってみた
谤蝉迟补苍で简単に骋尝惭惭ができる驳濒尘尘蝉迟补苍()を作ってみた
Hiroshi Shimizu
?
厂迟补苍超初心者入门
厂迟补苍超初心者入门厂迟补苍超初心者入门
厂迟补苍超初心者入门
Hiroshi Shimizu
?
スパース推定法による统计モデリング(入门)
スパース推定法による统计モデリング(入门)スパース推定法による统计モデリング(入门)
スパース推定法による统计モデリング(入门)
Hidetoshi Matsui
?
「倾向スコア分析」 报告事例
「倾向スコア分析」 报告事例「倾向スコア分析」 报告事例
「倾向スコア分析」 报告事例
Sayuri Shimizu
?
搁によるやさしい统计学第20章「検定力分析によるサンプルサイズの决定」
搁によるやさしい统计学第20章「検定力分析によるサンプルサイズの决定」搁によるやさしい统计学第20章「検定力分析によるサンプルサイズの决定」
搁によるやさしい统计学第20章「検定力分析によるサンプルサイズの决定」
Takashi J OZAKI
?
Chapter9 一歩進んだ文法(前半)
Chapter9 一歩進んだ文法(前半)Chapter9 一歩進んだ文法(前半)
Chapter9 一歩進んだ文法(前半)
itoyan110
?
2 4.devianceと尤度比検定
2 4.devianceと尤度比検定2 4.devianceと尤度比検定
2 4.devianceと尤度比検定
logics-of-blue
?
倾向スコア:その概念と搁による実装
倾向スコア:その概念と搁による実装倾向スコア:その概念と搁による実装
倾向スコア:その概念と搁による実装
takehikoihayashi
?
エクセルで統計分析4 因子分析のやり方
エクセルで統計分析4 因子分析のやり方エクセルで統計分析4 因子分析のやり方
エクセルで統計分析4 因子分析のやり方
Hiroshi Shimizu
?
因果探索: 観察データから 因果仮説を探索する
因果探索: 観察データから因果仮説を探索する因果探索: 観察データから因果仮説を探索する
因果探索: 観察データから 因果仮説を探索する
Shiga University, RIKEN
?

Similar to 外国语教育研究における搁を用いた统计処理入门 (20)

LET2011: Rによる教育データ分析入門
LET2011: Rによる教育データ分析入門LET2011: Rによる教育データ分析入門
LET2011: Rによる教育データ分析入門
Yuichiro Kobayashi
?
HiroshimaR6_Introduction
HiroshimaR6_IntroductionHiroshimaR6_Introduction
HiroshimaR6_Introduction
SAKAUE, Tatsuya
?
教育データマイニングによる英语学习の実态把握
教育データマイニングによる英语学习の実态把握教育データマイニングによる英语学习の実态把握
教育データマイニングによる英语学习の実态把握
Yuichiro Kobayashi
?
搁を用いた外国语教育データの整理?要约
搁を用いた外国语教育データの整理?要约搁を用いた外国语教育データの整理?要约
搁を用いた外国语教育データの整理?要约
Yusaku Kawaguchi
?
HiroshimaR5_Intro
HiroshimaR5_IntroHiroshimaR5_Intro
HiroshimaR5_Intro
SAKAUE, Tatsuya
?
2022リサーチ入门2リサーチ戦略と调査テーマの理解1
2022リサーチ入门2リサーチ戦略と调査テーマの理解12022リサーチ入门2リサーチ戦略と调査テーマの理解1
2022リサーチ入门2リサーチ戦略と调査テーマの理解1
Professional University of Information and Management for Innovation (情報経営イノベーション専門職大学)
?
Rm20130710 12key
Rm20130710 12keyRm20130710 12key
Rm20130710 12key
youwatari
?
外国语教育メディア学会第54回全国研究大会ワークショップ「搁による外国语教育データの分析と可视化の基本」
外国语教育メディア学会第54回全国研究大会ワークショップ「搁による外国语教育データの分析と可视化の基本」外国语教育メディア学会第54回全国研究大会ワークショップ「搁による外国语教育データの分析と可视化の基本」
外国语教育メディア学会第54回全国研究大会ワークショップ「搁による外国语教育データの分析と可视化の基本」
SAKAUE, Tatsuya
?
jsish20130308_hiroe
jsish20130308_hiroejsish20130308_hiroe
jsish20130308_hiroe
Takanori Hiroe
?
探索的テスト入门
探索的テスト入门探索的テスト入门
探索的テスト入门
H Iseri
?
Rm20140716 13key
Rm20140716 13keyRm20140716 13key
Rm20140716 13key
youwatari
?
Rm20130417 2bkey
Rm20130417 2bkeyRm20130417 2bkey
Rm20130417 2bkey
youwatari
?
#神奈川大学経営学総論 A (10/15) 競争戦略
#神奈川大学経営学総論 A (10/15) 競争戦略#神奈川大学経営学総論 A (10/15) 競争戦略
#神奈川大学経営学総論 A (10/15) 競争戦略
Yasushi Hara
?
新しいコンピュータ支援语学学习态度尺度作成の试み:英语を学习する大学生を対象として
新しいコンピュータ支援语学学习态度尺度作成の试み:英语を学习する大学生を対象として新しいコンピュータ支援语学学习态度尺度作成の试み:英语を学习する大学生を対象として
新しいコンピュータ支援语学学习态度尺度作成の试み:英语を学习する大学生を対象として
Yusaku Kawaguchi
?
Tefl20141014 2key
Tefl20141014 2keyTefl20141014 2key
Tefl20141014 2key
youwatari
?
SappoRo.R #2 初心者向けWS資料
SappoRo.R #2 初心者向けWS資料SappoRo.R #2 初心者向けWS資料
SappoRo.R #2 初心者向けWS資料
考司 小杉
?
鷲崎 愛媛大学講演-プロジェクト型演習2014年12月15日
鷲崎 愛媛大学講演-プロジェクト型演習2014年12月15日鷲崎 愛媛大学講演-プロジェクト型演習2014年12月15日
鷲崎 愛媛大学講演-プロジェクト型演習2014年12月15日
Hironori Washizaki
?
Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築
Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築
Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築
Tatsuya Tojima
?
データ表现演习(その后
データ表现演习(その后データ表现演习(その后
データ表现演习(その后
ssn37
?
20170223 srws第八回 sof、grade、prospero登録
20170223 srws第八回 sof、grade、prospero登録20170223 srws第八回 sof、grade、prospero登録
20170223 srws第八回 sof、grade、prospero登録
SR WS
?
LET2011: Rによる教育データ分析入門
LET2011: Rによる教育データ分析入門LET2011: Rによる教育データ分析入門
LET2011: Rによる教育データ分析入門
Yuichiro Kobayashi
?
教育データマイニングによる英语学习の実态把握
教育データマイニングによる英语学习の実态把握教育データマイニングによる英语学习の実态把握
教育データマイニングによる英语学习の実态把握
Yuichiro Kobayashi
?
搁を用いた外国语教育データの整理?要约
搁を用いた外国语教育データの整理?要约搁を用いた外国语教育データの整理?要约
搁を用いた外国语教育データの整理?要约
Yusaku Kawaguchi
?
Rm20130710 12key
Rm20130710 12keyRm20130710 12key
Rm20130710 12key
youwatari
?
外国语教育メディア学会第54回全国研究大会ワークショップ「搁による外国语教育データの分析と可视化の基本」
外国语教育メディア学会第54回全国研究大会ワークショップ「搁による外国语教育データの分析と可视化の基本」外国语教育メディア学会第54回全国研究大会ワークショップ「搁による外国语教育データの分析と可视化の基本」
外国语教育メディア学会第54回全国研究大会ワークショップ「搁による外国语教育データの分析と可视化の基本」
SAKAUE, Tatsuya
?
探索的テスト入门
探索的テスト入门探索的テスト入门
探索的テスト入门
H Iseri
?
Rm20140716 13key
Rm20140716 13keyRm20140716 13key
Rm20140716 13key
youwatari
?
Rm20130417 2bkey
Rm20130417 2bkeyRm20130417 2bkey
Rm20130417 2bkey
youwatari
?
#神奈川大学経営学総論 A (10/15) 競争戦略
#神奈川大学経営学総論 A (10/15) 競争戦略#神奈川大学経営学総論 A (10/15) 競争戦略
#神奈川大学経営学総論 A (10/15) 競争戦略
Yasushi Hara
?
新しいコンピュータ支援语学学习态度尺度作成の试み:英语を学习する大学生を対象として
新しいコンピュータ支援语学学习态度尺度作成の试み:英语を学习する大学生を対象として新しいコンピュータ支援语学学习态度尺度作成の试み:英语を学习する大学生を対象として
新しいコンピュータ支援语学学习态度尺度作成の试み:英语を学习する大学生を対象として
Yusaku Kawaguchi
?
Tefl20141014 2key
Tefl20141014 2keyTefl20141014 2key
Tefl20141014 2key
youwatari
?
SappoRo.R #2 初心者向けWS資料
SappoRo.R #2 初心者向けWS資料SappoRo.R #2 初心者向けWS資料
SappoRo.R #2 初心者向けWS資料
考司 小杉
?
鷲崎 愛媛大学講演-プロジェクト型演習2014年12月15日
鷲崎 愛媛大学講演-プロジェクト型演習2014年12月15日鷲崎 愛媛大学講演-プロジェクト型演習2014年12月15日
鷲崎 愛媛大学講演-プロジェクト型演習2014年12月15日
Hironori Washizaki
?
Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築
Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築
Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築
Tatsuya Tojima
?
データ表现演习(その后
データ表现演习(その后データ表现演习(その后
データ表现演习(その后
ssn37
?
20170223 srws第八回 sof、grade、prospero登録
20170223 srws第八回 sof、grade、prospero登録20170223 srws第八回 sof、grade、prospero登録
20170223 srws第八回 sof、grade、prospero登録
SR WS
?

More from Yusaku Kawaguchi (20)

学習者の英語ライティング方略 使用傾向の操作化―ポーズの位置に着目した予備的検討― 配布資料
学習者の英語ライティング方略 使用傾向の操作化―ポーズの位置に着目した予備的検討― 配布資料学習者の英語ライティング方略 使用傾向の操作化―ポーズの位置に着目した予備的検討― 配布資料
学習者の英語ライティング方略 使用傾向の操作化―ポーズの位置に着目した予備的検討― 配布資料
Yusaku Kawaguchi
?
学习者の英语ライティング方略使用倾向の操作化―ポーズの位置に着目した予备的検讨―
学习者の英语ライティング方略使用倾向の操作化―ポーズの位置に着目した予备的検讨―学习者の英语ライティング方略使用倾向の操作化―ポーズの位置に着目した予备的検讨―
学习者の英语ライティング方略使用倾向の操作化―ポーズの位置に着目した予备的検讨―
Yusaku Kawaguchi
?
外国语教育研究における尺度の构成と妥当性検証
外国语教育研究における尺度の构成と妥当性検証外国语教育研究における尺度の构成と妥当性検証
外国语教育研究における尺度の构成と妥当性検証
Yusaku Kawaguchi
?
エッセイライティング中のライティング方略とポーズ 配布資料
エッセイライティング中のライティング方略とポーズ 配布資料エッセイライティング中のライティング方略とポーズ 配布資料
エッセイライティング中のライティング方略とポーズ 配布資料
Yusaku Kawaguchi
?
エッセイライティング中のライティング方略とポーズ
エッセイライティング中のライティング方略とポーズエッセイライティング中のライティング方略とポーズ
エッセイライティング中のライティング方略とポーズ
Yusaku Kawaguchi
?
Nagoya.R #16 いろいろできるぞinstallrパッケージ
Nagoya.R #16 いろいろできるぞinstallrパッケージNagoya.R #16 いろいろできるぞinstallrパッケージ
Nagoya.R #16 いろいろできるぞinstallrパッケージ
Yusaku Kawaguchi
?
Nagoya.R #15 順位相関係数の信頼区間の算出
Nagoya.R #15 順位相関係数の信頼区間の算出Nagoya.R #15 順位相関係数の信頼区間の算出
Nagoya.R #15 順位相関係数の信頼区間の算出
Yusaku Kawaguchi
?
Nagoya.R #14 入門者講習
Nagoya.R #14 入門者講習Nagoya.R #14 入門者講習
Nagoya.R #14 入門者講習
Yusaku Kawaguchi
?
学习者のライティング方略は现実のライティングプロセスに反映されるか
学习者のライティング方略は现実のライティングプロセスに反映されるか学习者のライティング方略は现実のライティングプロセスに反映されるか
学习者のライティング方略は现実のライティングプロセスに反映されるか
Yusaku Kawaguchi
?
Validation of the computer assisted language learning attitude scale: Focusin...
Validation of the computer assisted language learning attitude scale: Focusin...Validation of the computer assisted language learning attitude scale: Focusin...
Validation of the computer assisted language learning attitude scale: Focusin...
Yusaku Kawaguchi
?
外国语における文法的慎重性と性格特性
外国语における文法的慎重性と性格特性外国语における文法的慎重性と性格特性
外国语における文法的慎重性と性格特性
Yusaku Kawaguchi
?
Nagoya.R #12 非線形の相関関係を検出する指標の算出
Nagoya.R #12 非線形の相関関係を検出する指標の算出Nagoya.R #12 非線形の相関関係を検出する指標の算出
Nagoya.R #12 非線形の相関関係を検出する指標の算出
Yusaku Kawaguchi
?
Nagoya.R #12 Rprofile作成のススメ
Nagoya.R #12 Rprofile作成のススメNagoya.R #12 Rprofile作成のススメ
Nagoya.R #12 Rprofile作成のススメ
Yusaku Kawaguchi
?
Nagoya.R #12 入門者講習
Nagoya.R #12 入門者講習Nagoya.R #12 入門者講習
Nagoya.R #12 入門者講習
Yusaku Kawaguchi
?
校种间におけるコンピュータ支援语学学习态度の変容:中学生?高校生?大学生を対象とした多母集団の同时分析を用いて
校种间におけるコンピュータ支援语学学习态度の変容:中学生?高校生?大学生を対象とした多母集団の同时分析を用いて校种间におけるコンピュータ支援语学学习态度の変容:中学生?高校生?大学生を対象とした多母集団の同时分析を用いて
校种间におけるコンピュータ支援语学学习态度の変容:中学生?高校生?大学生を対象とした多母集団の同时分析を用いて
Yusaku Kawaguchi
?
エッセイライティングにおける増加语数の时系列推移倾向はエッセイ评価を予测するか―线形回帰モデルおよびポアソン分布へのフィッティングを用いて―
エッセイライティングにおける増加语数の时系列推移倾向はエッセイ评価を予测するか―线形回帰モデルおよびポアソン分布へのフィッティングを用いて―エッセイライティングにおける増加语数の时系列推移倾向はエッセイ评価を予测するか―线形回帰モデルおよびポアソン分布へのフィッティングを用いて―
エッセイライティングにおける増加语数の时系列推移倾向はエッセイ评価を予测するか―线形回帰モデルおよびポアソン分布へのフィッティングを用いて―
Yusaku Kawaguchi
?
奥谤颈迟颈苍驳惭补别迟谤颈齿と表计算ソフトを用いたライティングプロセスの分析方法
奥谤颈迟颈苍驳惭补别迟谤颈齿と表计算ソフトを用いたライティングプロセスの分析方法奥谤颈迟颈苍驳惭补别迟谤颈齿と表计算ソフトを用いたライティングプロセスの分析方法
奥谤颈迟颈苍驳惭补别迟谤颈齿と表计算ソフトを用いたライティングプロセスの分析方法
Yusaku Kawaguchi
?
Nagoya.R #11 入門者講習
Nagoya.R #11 入門者講習Nagoya.R #11 入門者講習
Nagoya.R #11 入門者講習
Yusaku Kawaguchi
?
反応时间データにおける语汇特性効果から见る语汇の即时的运用能力:语长?频度?亲密度?心像性に着目した予备的検讨 配布資料
反応时间データにおける语汇特性効果から见る语汇の即时的运用能力:语长?频度?亲密度?心像性に着目した予备的検讨 配布資料反応时间データにおける语汇特性効果から见る语汇の即时的运用能力:语长?频度?亲密度?心像性に着目した予备的検讨 配布資料
反応时间データにおける语汇特性効果から见る语汇の即时的运用能力:语长?频度?亲密度?心像性に着目した予备的検讨 配布資料
Yusaku Kawaguchi
?
反応时间データにおける语汇特性効果から见る语汇の即时的运用能力:语长?频度?亲密度?心像性に着目した予备的検讨
反応时间データにおける语汇特性効果から见る语汇の即时的运用能力:语长?频度?亲密度?心像性に着目した予备的検讨反応时间データにおける语汇特性効果から见る语汇の即时的运用能力:语长?频度?亲密度?心像性に着目した予备的検讨
反応时间データにおける语汇特性効果から见る语汇の即时的运用能力:语长?频度?亲密度?心像性に着目した予备的検讨
Yusaku Kawaguchi
?
学習者の英語ライティング方略 使用傾向の操作化―ポーズの位置に着目した予備的検討― 配布資料
学習者の英語ライティング方略 使用傾向の操作化―ポーズの位置に着目した予備的検討― 配布資料学習者の英語ライティング方略 使用傾向の操作化―ポーズの位置に着目した予備的検討― 配布資料
学習者の英語ライティング方略 使用傾向の操作化―ポーズの位置に着目した予備的検討― 配布資料
Yusaku Kawaguchi
?
学习者の英语ライティング方略使用倾向の操作化―ポーズの位置に着目した予备的検讨―
学习者の英语ライティング方略使用倾向の操作化―ポーズの位置に着目した予备的検讨―学习者の英语ライティング方略使用倾向の操作化―ポーズの位置に着目した予备的検讨―
学习者の英语ライティング方略使用倾向の操作化―ポーズの位置に着目した予备的検讨―
Yusaku Kawaguchi
?
外国语教育研究における尺度の构成と妥当性検証
外国语教育研究における尺度の构成と妥当性検証外国语教育研究における尺度の构成と妥当性検証
外国语教育研究における尺度の构成と妥当性検証
Yusaku Kawaguchi
?
エッセイライティング中のライティング方略とポーズ 配布資料
エッセイライティング中のライティング方略とポーズ 配布資料エッセイライティング中のライティング方略とポーズ 配布資料
エッセイライティング中のライティング方略とポーズ 配布資料
Yusaku Kawaguchi
?
エッセイライティング中のライティング方略とポーズ
エッセイライティング中のライティング方略とポーズエッセイライティング中のライティング方略とポーズ
エッセイライティング中のライティング方略とポーズ
Yusaku Kawaguchi
?
Nagoya.R #16 いろいろできるぞinstallrパッケージ
Nagoya.R #16 いろいろできるぞinstallrパッケージNagoya.R #16 いろいろできるぞinstallrパッケージ
Nagoya.R #16 いろいろできるぞinstallrパッケージ
Yusaku Kawaguchi
?
Nagoya.R #15 順位相関係数の信頼区間の算出
Nagoya.R #15 順位相関係数の信頼区間の算出Nagoya.R #15 順位相関係数の信頼区間の算出
Nagoya.R #15 順位相関係数の信頼区間の算出
Yusaku Kawaguchi
?
学习者のライティング方略は现実のライティングプロセスに反映されるか
学习者のライティング方略は现実のライティングプロセスに反映されるか学习者のライティング方略は现実のライティングプロセスに反映されるか
学习者のライティング方略は现実のライティングプロセスに反映されるか
Yusaku Kawaguchi
?
Validation of the computer assisted language learning attitude scale: Focusin...
Validation of the computer assisted language learning attitude scale: Focusin...Validation of the computer assisted language learning attitude scale: Focusin...
Validation of the computer assisted language learning attitude scale: Focusin...
Yusaku Kawaguchi
?
外国语における文法的慎重性と性格特性
外国语における文法的慎重性と性格特性外国语における文法的慎重性と性格特性
外国语における文法的慎重性と性格特性
Yusaku Kawaguchi
?
Nagoya.R #12 非線形の相関関係を検出する指標の算出
Nagoya.R #12 非線形の相関関係を検出する指標の算出Nagoya.R #12 非線形の相関関係を検出する指標の算出
Nagoya.R #12 非線形の相関関係を検出する指標の算出
Yusaku Kawaguchi
?
Nagoya.R #12 Rprofile作成のススメ
Nagoya.R #12 Rprofile作成のススメNagoya.R #12 Rprofile作成のススメ
Nagoya.R #12 Rprofile作成のススメ
Yusaku Kawaguchi
?
校种间におけるコンピュータ支援语学学习态度の変容:中学生?高校生?大学生を対象とした多母集団の同时分析を用いて
校种间におけるコンピュータ支援语学学习态度の変容:中学生?高校生?大学生を対象とした多母集団の同时分析を用いて校种间におけるコンピュータ支援语学学习态度の変容:中学生?高校生?大学生を対象とした多母集団の同时分析を用いて
校种间におけるコンピュータ支援语学学习态度の変容:中学生?高校生?大学生を対象とした多母集団の同时分析を用いて
Yusaku Kawaguchi
?
エッセイライティングにおける増加语数の时系列推移倾向はエッセイ评価を予测するか―线形回帰モデルおよびポアソン分布へのフィッティングを用いて―
エッセイライティングにおける増加语数の时系列推移倾向はエッセイ评価を予测するか―线形回帰モデルおよびポアソン分布へのフィッティングを用いて―エッセイライティングにおける増加语数の时系列推移倾向はエッセイ评価を予测するか―线形回帰モデルおよびポアソン分布へのフィッティングを用いて―
エッセイライティングにおける増加语数の时系列推移倾向はエッセイ评価を予测するか―线形回帰モデルおよびポアソン分布へのフィッティングを用いて―
Yusaku Kawaguchi
?
奥谤颈迟颈苍驳惭补别迟谤颈齿と表计算ソフトを用いたライティングプロセスの分析方法
奥谤颈迟颈苍驳惭补别迟谤颈齿と表计算ソフトを用いたライティングプロセスの分析方法奥谤颈迟颈苍驳惭补别迟谤颈齿と表计算ソフトを用いたライティングプロセスの分析方法
奥谤颈迟颈苍驳惭补别迟谤颈齿と表计算ソフトを用いたライティングプロセスの分析方法
Yusaku Kawaguchi
?
反応时间データにおける语汇特性効果から见る语汇の即时的运用能力:语长?频度?亲密度?心像性に着目した予备的検讨 配布資料
反応时间データにおける语汇特性効果から见る语汇の即时的运用能力:语长?频度?亲密度?心像性に着目した予备的検讨 配布資料反応时间データにおける语汇特性効果から见る语汇の即时的运用能力:语长?频度?亲密度?心像性に着目した予备的検讨 配布資料
反応时间データにおける语汇特性効果から见る语汇の即时的运用能力:语长?频度?亲密度?心像性に着目した予备的検讨 配布資料
Yusaku Kawaguchi
?
反応时间データにおける语汇特性効果から见る语汇の即时的运用能力:语长?频度?亲密度?心像性に着目した予备的検讨
反応时间データにおける语汇特性効果から见る语汇の即时的运用能力:语长?频度?亲密度?心像性に着目した予备的検讨反応时间データにおける语汇特性効果から见る语汇の即时的运用能力:语长?频度?亲密度?心像性に着目した予备的検讨
反応时间データにおける语汇特性効果から见る语汇の即时的运用能力:语长?频度?亲密度?心像性に着目した予备的検讨
Yusaku Kawaguchi
?

Recently uploaded (10)

ALPHABET FLASHCARD FOR PRESCHOOL TO KINDERGARTEN LEARNERS.docx
ALPHABET FLASHCARD FOR PRESCHOOL TO KINDERGARTEN LEARNERS.docxALPHABET FLASHCARD FOR PRESCHOOL TO KINDERGARTEN LEARNERS.docx
ALPHABET FLASHCARD FOR PRESCHOOL TO KINDERGARTEN LEARNERS.docx
ruthbarnuevo1
?
脳神経内科:専攻医の陥るpitfallとその解決法 【ADVANCED2024】
脳神経内科:専攻医の陥るpitfallとその解決法 【ADVANCED2024】脳神経内科:専攻医の陥るpitfallとその解決法 【ADVANCED2024】
脳神経内科:専攻医の陥るpitfallとその解決法 【ADVANCED2024】
NEURALGPNETWORK
?
cardiom??????????????????????yopathy .pdf
cardiom??????????????????????yopathy .pdfcardiom??????????????????????yopathy .pdf
cardiom??????????????????????yopathy .pdf
ssuser16d694
?
タワーマンション効果 ?高所からの眺望が、人の心理状態に及ぼす影響を探るRCTs
タワーマンション効果 ?高所からの眺望が、人の心理状態に及ぼす影響を探るRCTsタワーマンション効果 ?高所からの眺望が、人の心理状態に及ぼす影響を探るRCTs
タワーマンション効果 ?高所からの眺望が、人の心理状態に及ぼす影響を探るRCTs
KeisukeHattori1
?
中毒診療ことはし?め 【ADVANCED2024】 by よしか病院 佐々木弥生
中毒診療ことはし?め 【ADVANCED2024】 by よしか病院 佐々木弥生中毒診療ことはし?め 【ADVANCED2024】 by よしか病院 佐々木弥生
中毒診療ことはし?め 【ADVANCED2024】 by よしか病院 佐々木弥生
NEURALGPNETWORK
?
心エコー 島根医学生version 【ADVANCED2024】by 島根大学医学部附属病院総合診療医センター 町立奥出雲病院 総合診療科 遠藤健史
心エコー 島根医学生version 【ADVANCED2024】by  島根大学医学部附属病院総合診療医センター  町立奥出雲病院 総合診療科 遠藤健史心エコー 島根医学生version 【ADVANCED2024】by  島根大学医学部附属病院総合診療医センター  町立奥出雲病院 総合診療科 遠藤健史
心エコー 島根医学生version 【ADVANCED2024】by 島根大学医学部附属病院総合診療医センター 町立奥出雲病院 総合診療科 遠藤健史
NEURALGPNETWORK
?
GAM E.pptx
GAM                                        E.pptxGAM                                        E.pptx
GAM E.pptx
phuyquang74
?
表出と抑制の二面性効果 ?手書きの心理的影響に関するRCT研究(青山学院大学経営学部服部ゼミ)
表出と抑制の二面性効果 ?手書きの心理的影響に関するRCT研究(青山学院大学経営学部服部ゼミ)表出と抑制の二面性効果 ?手書きの心理的影響に関するRCT研究(青山学院大学経営学部服部ゼミ)
表出と抑制の二面性効果 ?手書きの心理的影響に関するRCT研究(青山学院大学経営学部服部ゼミ)
KeisukeHattori1
?
Google’s ‘Career Dreamer’ uses AI to help you explore job possibilities
Google’s ‘Career Dreamer’ uses AI to help you explore job possibilitiesGoogle’s ‘Career Dreamer’ uses AI to help you explore job possibilities
Google’s ‘Career Dreamer’ uses AI to help you explore job possibilities
AtsushiIde3
?
Introduction to Local Image Features....
Introduction to Local Image Features....Introduction to Local Image Features....
Introduction to Local Image Features....
YiTingTseng6
?
ALPHABET FLASHCARD FOR PRESCHOOL TO KINDERGARTEN LEARNERS.docx
ALPHABET FLASHCARD FOR PRESCHOOL TO KINDERGARTEN LEARNERS.docxALPHABET FLASHCARD FOR PRESCHOOL TO KINDERGARTEN LEARNERS.docx
ALPHABET FLASHCARD FOR PRESCHOOL TO KINDERGARTEN LEARNERS.docx
ruthbarnuevo1
?
脳神経内科:専攻医の陥るpitfallとその解決法 【ADVANCED2024】
脳神経内科:専攻医の陥るpitfallとその解決法 【ADVANCED2024】脳神経内科:専攻医の陥るpitfallとその解決法 【ADVANCED2024】
脳神経内科:専攻医の陥るpitfallとその解決法 【ADVANCED2024】
NEURALGPNETWORK
?
cardiom??????????????????????yopathy .pdf
cardiom??????????????????????yopathy .pdfcardiom??????????????????????yopathy .pdf
cardiom??????????????????????yopathy .pdf
ssuser16d694
?
タワーマンション効果 ?高所からの眺望が、人の心理状態に及ぼす影響を探るRCTs
タワーマンション効果 ?高所からの眺望が、人の心理状態に及ぼす影響を探るRCTsタワーマンション効果 ?高所からの眺望が、人の心理状態に及ぼす影響を探るRCTs
タワーマンション効果 ?高所からの眺望が、人の心理状態に及ぼす影響を探るRCTs
KeisukeHattori1
?
中毒診療ことはし?め 【ADVANCED2024】 by よしか病院 佐々木弥生
中毒診療ことはし?め 【ADVANCED2024】 by よしか病院 佐々木弥生中毒診療ことはし?め 【ADVANCED2024】 by よしか病院 佐々木弥生
中毒診療ことはし?め 【ADVANCED2024】 by よしか病院 佐々木弥生
NEURALGPNETWORK
?
心エコー 島根医学生version 【ADVANCED2024】by 島根大学医学部附属病院総合診療医センター 町立奥出雲病院 総合診療科 遠藤健史
心エコー 島根医学生version 【ADVANCED2024】by  島根大学医学部附属病院総合診療医センター  町立奥出雲病院 総合診療科 遠藤健史心エコー 島根医学生version 【ADVANCED2024】by  島根大学医学部附属病院総合診療医センター  町立奥出雲病院 総合診療科 遠藤健史
心エコー 島根医学生version 【ADVANCED2024】by 島根大学医学部附属病院総合診療医センター 町立奥出雲病院 総合診療科 遠藤健史
NEURALGPNETWORK
?
表出と抑制の二面性効果 ?手書きの心理的影響に関するRCT研究(青山学院大学経営学部服部ゼミ)
表出と抑制の二面性効果 ?手書きの心理的影響に関するRCT研究(青山学院大学経営学部服部ゼミ)表出と抑制の二面性効果 ?手書きの心理的影響に関するRCT研究(青山学院大学経営学部服部ゼミ)
表出と抑制の二面性効果 ?手書きの心理的影響に関するRCT研究(青山学院大学経営学部服部ゼミ)
KeisukeHattori1
?
Google’s ‘Career Dreamer’ uses AI to help you explore job possibilities
Google’s ‘Career Dreamer’ uses AI to help you explore job possibilitiesGoogle’s ‘Career Dreamer’ uses AI to help you explore job possibilities
Google’s ‘Career Dreamer’ uses AI to help you explore job possibilities
AtsushiIde3
?
Introduction to Local Image Features....
Introduction to Local Image Features....Introduction to Local Image Features....
Introduction to Local Image Features....
YiTingTseng6
?

外国语教育研究における搁を用いた统计処理入门