CEDEC2017 VR180 3D live streaming camera at "SHOWROOM" caseTakeyuki Ogura
?
About implementing VR180 3D live streaming camera and deploying and operating them in small studio. "SHOWROOM" is a live streaming platform started by DeNA in 2013.
本スライドは、弊社の梅本により弊社内の技術勉強会で使用されたものです。
近年注目を集めるアーキテクチャーである「Transformer」の解説スライドとなっております。
"Arithmer Seminar" is weekly held, where professionals from within and outside our company give lectures on their respective expertise.
The slides are made by the lecturer from outside our company, and shared here with his/her permission.
Arithmer株式会社は東京大学大学院数理科学研究科発の数学の会社です。私達は現代数学を応用して、様々な分野のソリューションに、新しい高度AIシステムを導入しています。AIをいかに上手に使って仕事を効率化するか、そして人々の役に立つ結果を生み出すのか、それを考えるのが私たちの仕事です。
Arithmer began at the University of Tokyo Graduate School of Mathematical Sciences. Today, our research of modern mathematics and AI systems has the capability of providing solutions when dealing with tough complex issues. At Arithmer we believe it is our job to realize the functions of AI through improving work efficiency and producing more useful results for society.
CV分野での最近の脱○○系論文3本を紹介します。
?脱ResNets: RepVGG: Making VGG-style ConvNets Great Again
?脱BatchNorm: High-Performance Large-Scale Image Recognition Without Normalization
?脱attention: LambdaNetworks: Modeling Long-Range Interactions Without Attention
The document summarizes a research paper that compares the performance of MLP-based models to Transformer-based models on various natural language processing and computer vision tasks. The key points are:
1. Gated MLP (gMLP) architectures can achieve performance comparable to Transformers on most tasks, demonstrating that attention mechanisms may not be strictly necessary.
2. However, attention still provides benefits for some NLP tasks, as models combining gMLP and attention outperformed pure gMLP models on certain benchmarks.
3. For computer vision, gMLP achieved results close to Vision Transformers and CNNs on image classification, indicating gMLP can match their data efficiency.
CEDEC2017 VR180 3D live streaming camera at "SHOWROOM" caseTakeyuki Ogura
?
About implementing VR180 3D live streaming camera and deploying and operating them in small studio. "SHOWROOM" is a live streaming platform started by DeNA in 2013.
本スライドは、弊社の梅本により弊社内の技術勉強会で使用されたものです。
近年注目を集めるアーキテクチャーである「Transformer」の解説スライドとなっております。
"Arithmer Seminar" is weekly held, where professionals from within and outside our company give lectures on their respective expertise.
The slides are made by the lecturer from outside our company, and shared here with his/her permission.
Arithmer株式会社は東京大学大学院数理科学研究科発の数学の会社です。私達は現代数学を応用して、様々な分野のソリューションに、新しい高度AIシステムを導入しています。AIをいかに上手に使って仕事を効率化するか、そして人々の役に立つ結果を生み出すのか、それを考えるのが私たちの仕事です。
Arithmer began at the University of Tokyo Graduate School of Mathematical Sciences. Today, our research of modern mathematics and AI systems has the capability of providing solutions when dealing with tough complex issues. At Arithmer we believe it is our job to realize the functions of AI through improving work efficiency and producing more useful results for society.
CV分野での最近の脱○○系論文3本を紹介します。
?脱ResNets: RepVGG: Making VGG-style ConvNets Great Again
?脱BatchNorm: High-Performance Large-Scale Image Recognition Without Normalization
?脱attention: LambdaNetworks: Modeling Long-Range Interactions Without Attention
The document summarizes a research paper that compares the performance of MLP-based models to Transformer-based models on various natural language processing and computer vision tasks. The key points are:
1. Gated MLP (gMLP) architectures can achieve performance comparable to Transformers on most tasks, demonstrating that attention mechanisms may not be strictly necessary.
2. However, attention still provides benefits for some NLP tasks, as models combining gMLP and attention outperformed pure gMLP models on certain benchmarks.
3. For computer vision, gMLP achieved results close to Vision Transformers and CNNs on image classification, indicating gMLP can match their data efficiency.
NTT Communications' Initiatives to Utilize Infrastructure DataDataWorks Summit
?
We will guide you on the status of utilization of the big data analysis infrastructure for infrastructure data, centering on initiatives at the Next Generation Platform Promotion Office.