ºÝºÝߣ

ºÝºÝߣShare a Scribd company logo
?? ???? ??? ????
???
LG CNS
Advanced Analytics Center
??????? ?? ???
? ?? ???? ?? ????? ?? ??? ¡ü
http://www.datanami.com/2012/12/24/how_object_storage_and_information_dispersal_address_big_data_challenges/
??? ??
? ?????, ???? ?? (??)
? ??? ?? 11??
¨C ???? ??????
? ?????, ? ??? (CAD)
¨C LG CNS ???? ??
? ?????, ????/??
? ???? ?????/
????/???? ?? ???
(neuralix@gmail.com)
www.facebook.com/groups/cvprml
(>2,200?)
¡ù iPad 1, iPhone 5GS ? ??? ??, ??? ?????
? ??? ??+a? ?? ?????
?? ??????? ????
? ?????
?? ??? ?????
???? ??? ????
??? ??? ?? ????
:
¡ù ?????? ¡®??¡¯? ???? ?? ???? ?? ? ??/?? ??
(¡°???? ?? ???? ???? ??¡±)
????? ????
http://www.theguardian.com/technology/2012/sep/30/google-self-driving-car-unemployment
http://edn.com/electronics-blogs/automotive-innovation/4402800/Self-driving-car-pushes-sensor-technology
? ?? ???? ???
¡ù ??? ??? ? ??? ???? ??? LIDAR,
??? ???? RADAR?? ? ?? ?? ??? ???
? ????¡­
? Data Type
¨C Image (O)
¨C Video (X)
? Language
¨C Python (2.7.X)
? Library (???)
¨C scikit-image
NOT
? GPU(CUDA), 3D, ????,
???? ????,
??? ????
¡ù ????? ??? ??? ???
?? ?? ????
?? ??? ??
? Digitizing
Figure Credit : Amin Allalou
¡ù ??? ??. ? ??? ?? ??? ?? ???? ????? ?
?? ??? ??
? ?????
Figure Credit : Alex Lin
1. ????? ?? 2. ??? ?? ?? ??
?? ??? ??
? 256 ?? ??
Figure Credit : Ruye Wang
Weber-Fechner law
¡°? ??? ?? ??? ?? ? ?? ??¡± (??? ??)
?? ??? ????? ? ??? ??
?? ?? ??
? ?? ?? ?? ?? ??
???? ?? ??? ?? ??? ??? ??
BMP
Ÿo
?
(????)
N/A
? ??? ??, Windows OS?
TIFF ??? ?? ??, ?? ???
PNG ? ??? ?? ??? ??
GIF
ÓÐ
?? ??
???? ????, ?????
?? ? ??(:?? GIF)
JPG ?? ?? ?? ??
??? ??? ?? ?? ???
???? ??? ???
? ?
? Basic Processing
? Region Processing
? Edge/Contour
? Point/Line/Corner
? Matching
? Preprocessing
? Color
¡ù ??? ????? ??
Basic Processing
¡°??? ?? ? ? ? ??.¡±
(?, ?????...)
Load/Save and Display
? PIL (Python Image Library)
¨C Import Module
¨C Load
¨C Display
¨C Save
>> from PIL import Image
>> from pylab import *
>> Img = Image.fromarray(img)
>> Img.save('C:mandrill_new.bmp')
>> img = array(Image.open('C:mandrill.bmp'))
>> imshow(img)
?? ??
? ??? ??? ??? matplotlib? ? ????? pylab? ???
? ???
? numpy? ?? ??
? ? ???, ?? ? ???? ??? ??? ?? ??? ?? ??
?? ????? ? ??
? ?? ??? ?? ?? ??? ???? ?? ??? ?? ?? ?
?? ( ?? ?, neuralix@gmail.com ? inform ?? )
Load/Save and Display
? skimage
>> from skimage import io
>> io.imsave( filename, logo )
>> imshow( img )
? opencv
>> import numpy as np
>> import cv2
>> cv2.imwrite( filename, img)
>> cv2.imshow('image', img)
>> camera = io.imread( filename ) >> img = cv2.imread( filename, 0 )
¡ù URL? ??? ??
Pixel Operation
? Get pixel value
? Put Pixel Value
? Area Operation
>> print img[ i ][ j ][ k ]
for i in range(img.shape[0]):
for j in range(img.shape[1]):
for k in range(img.shape[2]):
if i>=200 and i<300:
if j>=200 and j<300:
img[i][j][k] = 0 * img[i][j][k]
>> img[ i ][ j ][ k ] = 0
>> img[200:300][200:300] = 
0 * img[200:300][200:300]
or Simply,
Line Drawing
? DDA (Digital Differential Analyzer)
>> from skimage.draw import line, set_color
>> rr, cc = line(x1, y1, x2, y2)
>> set_color(img, (rr, cc), 1)
>> imshow(img)
¡ù ?? ??? ??? ??
Polygon Drawing
? ??? ???
>> from skimage.draw import polygon
>> img = np.zeros((width, height), dtype=np.uint8)
>> x = np.array([x1, x2, x3, x4, ¡­])
>> y = np.array([y1, y2, y3, y4, ¡­])
>> rr, cc = polygon(y, x)
>> img[rr, cc] = 1
Picking Points (¡°ginput¡±)
? ??? ??? ??? ??? ??
>> from PIL import Image
>> from pylab import *
>> img = array(Image.open('C:mandrill.bmp'))
>> imshow(img)
>> print 'Please click 3 points'
>> x = ginput(3)
>> print 'you clicked:',x
>> show()
>> x
you clicked: [(16.737903225806448, 18.705645161
290249), (406.85887096774195, 23.2419354838709
18), (227.22177419354841, 242.79838709677415)]
¡ù ??? ??? MATLAB? ?? ??
(Graphical INPUT)??.
?? ?? ??? ???? ?????? ?.
Region Processing
¡ù ??? ??? ??
Thresholding (Binarizing)
? Otsu¡¯s (Automatic) Thresholding
>> from skimage import data
>> from skimage.filter import threshold_otsu, 
threshold_adaptive
>> from skimage import color
>> img = io.imread('C:Mandrill.bmp')
>> img_g = color.rgb2grey(img)
>> val_thresh = threshold_otsu(img_g)
>> img_bw = im_g > val_thresh
>> io.imshow( img_bw )
Figure Credit : https://software.intel.com/sites/products/documentation/hpc/ipp/ippi/ippi_ch7/functn_ComputeThreshold_Otsu.html
¡°Blob¡±
Labeling
? Connected Components Labeling
http://engineersphere.com/biomedical-engineering/biomedical-image-processing-iii.html
>> from skimage.morphology import label, closing, square
>> from skimage.color import label2rgb
¡­
>> val_thresh = threshold_otsu(img)
>> img_label = label(val_thresh)
>> image_label_rgb = label2rgb(label_image)
>> imshow(image_label_rgb)
¡ù Check neighborhood convention first!
(8-neighborhood is complete, 4-neighbor is not.)
Morphological Operation
http://www.dspguide.com/ch25/4.htm
>> from skimage.morphology import erosion, dilation, opening, closing, white_tophat
>> from skimage.morphology import black_tophat, skeletonize, convex_hull_image
>> from skimage.morphology import disk
¡­
>> selem = disk(6)
>> img_eroded = erosion(img, selem)
>> imshow(img_eroded, cmap=plt.cm.gray)
>> img_dilated = dilation(img, selem)
>> imshow(img_dilated, cmap=plt.cm.gray)
https://www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/ImageProcessing-html/topic4.htm
? 1) ??? <????/????>, 2) ?? ?? ??? <??/???
??>, 3) <??? ???/???? ????>
¡ù Structuring element
(:selem)? ??? ??
? ?? ???
¡ù LIDAR/RADAR ??
?? ???? ??
Boolean Operation
? Image Boolean Operations
Flood Fill
? Filling the holes
>> from scipy import ndimage
>> from skimage.filter import canny
>> img_edges = canny(img/255.)
>> img_filled = ndimage.binary_fill_holes(img_edges)
Segmentation
? Mean Shift
>> import cv2
>> import pymeanshift as pms
>> img_orig = cv2.imread("example.png")
>>(img_segmented, img_label, number_regions) = 
pms.segment(img_orig, spatial_radius=6, 
range_radius=4.5, min_density=50)
https://code.google.com/p/pymeanshift/
¡ù ???(Segmentation)? ??? ??, ??
?? ??? ?? ???? ??, ???? ?
??? ??. GraphCuts, GrabCuts? ??,
Mean Shift(:Moving Averaging)? ??,
Chan¡¯s Active Contour without Edges? ??
?? ???
Edge / Contour
¡ù ??? ?, ???
Skeletonization
? Skeletonization
http://homepages.inf.ed.ac.uk/rbf/HIPR2/thin.htm
>> from skimage.morphology import skeletonize
>> img_skeleton = skeletonize(image)
>> imshow(img_skeleton, cmap=plt.cm.gray)
Contour Finding
? Contour Finding
>> import numpy as np
>> import matplotlib.pyplot as plt
>> from skimage import measure
>> x, y = np.ogrid[-np.pi:np.pi:100j, -np.pi:np.pi:100j]
>> r = np.sin(np.exp((np.sin(x)**3 + np.cos(y)**2)))
>> contours = measure.find_contours(r, 0.8)
>> fig, ax = plt.subplots()
>> ax.imshow(r, interpolation='nearest', cmap=plt.cm.gray)
>> for n, contour in enumerate(contours):
ax.plot(contour[:, 1], contour[:, 0], linewidth=2)
>> plt.show()
¡ù ???? ? ??? ??? ????
Edge Detection (1of2)
? Canny Edge Detection
>> import numpy as np
>> import matplotlib.pyplot as plt
>> from scipy import ndimage
>> from skimage import filter
>> img_edges = filter.canny(img, sigma=3)
>> imshow(img_edges, cmap=plt.cm.gray)
¡ù ???? ???? ??? ?? ??? ?? ???
? ??? ???? ??? ????? ???? ??
? ??? ? ???? (1???? ???).
¡ù ?? ??? Thresholding ? ?? ??? ??
Edge Detection (2of2)
? Canny Edge Detection
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MARBLE/low/edges/canny.htm
http://news.mynavi.jp/photo/series/computer_vision/040/images/014l.jpg
http://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm
¡ù ?? ?? ??? ???? ?? (¡°Canny¡±)
Point / Line / Corner
Hough Transform (1of2)
? Hough Transform
http://docs.opencv.org/modules/imgproc/doc/feature_detection.html
Hough Transform (2of2)
? Hough Transform
http://www.aiaa-daycin.org/node/430
http://campar.in.tum.de/Students/DaPentenrieder
>>from skimage.transform import (hough_line, hough_l
ine_peaks, probabilistic_hough_line)
>> edges = canny(image, 2, 1, 25)
>> lines = probabilistic_hough_line(edges, threshold=
10, line_length=5, line_gap=3)
>> for line in lines:
p0, p1 = line
plt.plot((p0[0], p1[0]), (p0[1], p1[1]))
>> plt.show()
¡ù rho, theta ??? ? ??? x, y ??? ??
? ??? ???
¡ù ? ?? ?? ?? ??? rho, theta ????
voting?? ????? ???? ??? ???
Corner Detection (1of2)
? Harris Corner Detection
http://www.krankerkaktus.de/Portfolio/GraphicsProgramming
https://www.ee.iitb.ac.in/~sumantra/courses/ip/assignment_1.html
>> from skimage.feature import corner_harris, corner
_subpix, corner_peaks
>> coords = corner_peaks(corner_harris(image), min_
distance=5)
>> coords_subpix = corner_subpix(image, coords, win
dow_size=13)
>> fig, ax = plt.subplots()
>> ax.imshow(image, interpolation='nearest', cmap=p
lt.cm.gray)
>> ax.plot(coords[:, 1], coords[:, 0], '.b', markersize=3)
>> ax.plot(coords_subpix[:, 1], coords_subpix[:, 0], '+r',
markersize=15)
>> ax.axis((0, 350, 350, 0))
>> plt.show()
Corner Detection (2of2)
? Harris Corner Detection
http://www.mathworks.co.kr/kr/help/images/detect-corners-in-images.html
http://miac.unibas.ch/BIA/05-LandmarkBasedRegistration.html
¡ù ??? ??? ????? ?????? ??? ?,
???? ????? lambda 1, 2? ?? 0?? ? ?
?, ???? ?? ???? Corner? ???? ??.
Matching / Registration
Image Matching
? Template Matching
>>import numpy as np
>>import matplotlib.pyplot as plt
>>from skimage import data
>>from skimage.feature import match_template
>>result = match_template( img_whole, img_template )
Noise Suppression
? Denoising
? Median
>> from skimage import data, img_as_float
>> from skimage.restoration import denoise_tv_ch
ambolle, denoise_bilateral
¡­
>> imshow(denoise_bilateral(img, sigma_range=0.1,
sigma_spatial=15))
>> from skimage.morphology import disk
>> from skimage.filter.rank import median
¡­
>> img_med = median(img, disk(5))
Contrast
? Histogram Equalizing
>> from skimage import exposure
¡­
>> img_eq = exposure.equalize_hist(img)
Figure Credit : James Fishbaugh
¡ù ????? ????? ??? ? ?????? ??? ?? ??? ?? ???. ??
?? ? ????? ?????? CDF? ??? ????? ????? ??? ?? ??
?? ?? ? ???? ??? ??? ?????? ???.
Rotation
? Rotation with Interpolation
http://www.darktable.org/2012/06/upcoming-features-new-interpolation-modes-and-better-resize/dt-rotation-grid/
>> from skimage.transform import rotate
¡­
>> img = rotate(img, 90, resize=True).shape
>> import numpy as np
¡­
>> coord_center = tuple(np.array(image.shape)/2)
>> rot_mat = cv2.getRotationMatrix2D(coord_center,angle,1.0)
>> result = cv2.warpAffine(image, rot_mat, image.shape,flags=cv2.I
NTER_LINEAR)
¡ù ?? rotation? resizing? ?? ???? ??? interpolation? ?? ??? ?
?? ?. Skimage? ?? ??? ???? ?? ???? opencv? ??. ?? ima
ge.shape,flags ??? ??? ??? ???.
Color (1of3)
? RGB ? Grey
Luminousity
(Grey Value)
Average LightnessOriginal
(Color)
Figure Credit : Hohn D. Cook (http://www.johndcook.com/blog/2009/08/24/algorithms-convert-color-grayscale/)
>> from skimage.color import rgb2gray
>> from skimage import data
¡­
>> img_gray = rgb2gray(img) // Luminousity
Color (2of3)
? Radiometry ? Photometry ? Colorimetry
http://www.screentekinc.com/resource-center/photometry-and-colorimetry.shtml
http://www.chromapure.com/products-d3pro.asp
Color (3of3)
? Color Space
http://en.wikipedia.org/wiki/File:RGB_sliders.svg
https://software.intel.com/sites/products/documentation/hpc/ipp/ippi/ippi_ch6/ch6_color_models.html
¡ù ??????? 1? 255? ??
¡ù RGB? CMY? ??
(Cyan: R=0, G=255, B=255)
Kalman Filter
(linear quadratic estimation)
Kalman Filtering
? Kalman Filtering
# Kalman filter example demo in Python
# A Python implementation of the example given in pages 11-15 of "An
# Introduction to the Kalman Filter" by Greg Welch and Gary Bishop,
# University of North Carolina at Chapel Hill, Department of Computer
# Science, TR 95-041,
# http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html
# by Andrew D. Straw
import numpy
import pylab
# intial parameters
n_iter = 50
sz = (n_iter,) # size of array
x = -0.37727 # truth value (typo in example at top of p. 13 calls this z)
z = numpy.random.normal(x,0.1,size=sz) # observations (normal about x, sigma=0.1)
Q = 1e-5 # process variance
# allocate space for arrays
xhat=numpy.zeros(sz) # a posteri estimate of x
P=numpy.zeros(sz) # a posteri error estimate
xhatminus=numpy.zeros(sz) # a priori estimate of x
Pminus=numpy.zeros(sz) # a priori error estimate
K=numpy.zeros(sz) # gain or blending factor
R = 0.1**2 # estimate of measurement variance, change to see effect
# intial guesses
xhat[0] = 0.0
P[0] = 1.0
for k in range(1,n_iter):
# time update
xhatminus[k] = xhat[k-1]
Pminus[k] = P[k-1]+Q
# measurement update
K[k] = Pminus[k]/( Pminus[k]+R )
xhat[k] = xhatminus[k]+K[k]*(z[k]-xhatminus[k])
P[k] = (1-K[k])*Pminus[k]
pylab.figure()
pylab.plot(z,'k+',label='noisy measurements')
pylab.plot(xhat,'b-',label='a posteri estimate')
pylab.axhline(x,color='g',label='truth value')
pylab.legend()
pylab.xlabel('Iteration')
pylab.ylabel('Voltage')
pylab.figure()
valid_iter = range(1,n_iter) # Pminus not valid at step 0
pylab.plot(valid_iter,Pminus[valid_iter],label='a priori error estimate')
pylab.xlabel('Iteration')
pylab.ylabel('$(Voltage)^2$')
pylab.setp(pylab.gca(),'ylim',[0,.01])
pylab.show()
http://wiki.scipy.org/Cookbook/KalmanFiltering
¡ù z : ???? ??? ??
xhat : ??? ??
¡ù ¡°?? ???? ?? ??? ??? ?? ???.¡± (NASA)
¡°Stanley? ??? ?? ????.¡± (???? ??)
¡ù ??? ???? ???
???? ??
????
? ???? Package, Tools
¨C Anaconda Distribution https://store.continuum.io/cshop/anaconda
¡ù opencv, scikit-image, spyder? ?? ??
¨C Scikit-Image Package
? http://scikit-image.org
? http://scikit-image.org/docs/dev/auto_examples
¨C Pycharm IDE http://www.jetbrains.com/pycharm
¨C ?? Spyder IDE, iPython QTConsole, Sublime Text 2 ?
? ? (?? ? ???)
¨C http://book.naver.com/bookdb/book_detail.nhn?bid=6191572
¨C http://book.naver.com/bookdb/book_detail.nhn?bid=6802764
¨C http://book.naver.com/bookdb/book_detail.nhn?bid=6332184
¨C http://kangcom.com/sub/view.asp?sku=200311040002 (??)
? ? (??)
¨C http://www.amazon.com/Machine-Vision-Ramesh-Jain/dp/0070320187
¨C http://www.amazon.com/Computer-Vision-Algorithms-Applications-
Science/dp/1848829345/ref=sr_1_1?s=books&ie=UTF8&qid=1401379429&sr=1-
1&keywords=szeliski+computer+vision
?

More Related Content

What's hot (20)

¸ßË٤ʱ¶¾«¶ÈÖ¸ÊýévÊý±ð³æ±è¤ÎŒg×°
¸ßË٤ʱ¶¾«¶ÈÖ¸ÊýévÊý±ð³æ±è¤ÎŒg×°¸ßË٤ʱ¶¾«¶ÈÖ¸ÊýévÊý±ð³æ±è¤ÎŒg×°
¸ßË٤ʱ¶¾«¶ÈÖ¸ÊýévÊý±ð³æ±è¤ÎŒg×°
MITSUNARI Shigeo
?
Designing more efficient convolution neural network
Designing more efficient convolution neural networkDesigning more efficient convolution neural network
Designing more efficient convolution neural network
Dongyi Kim
?
???? ?? ??? ????
???? ?? ??? ???????? ?? ??? ????
???? ?? ??? ????
Yan So
?
???? ??????
???? ?????????? ??????
???? ??????
sprdd
?
Atelier : comment mettre en place un plan de communication sur les r¨¦seaux so...Atelier : comment mettre en place un plan de communication sur les r¨¦seaux so...
Atelier : comment mettre en place un plan de communication sur les r¨¦seaux so...
Editoile
?
ÒôÉù¸ÐÇéÈÏʶ¤Î·ÖÒ°¶¯Ïò¤ÈŒgÓû¯¤ËÏò¤±¤¿±·°Õ°Õ¤ÎÈ¡¤ê×é¤ß
ÒôÉù¸ÐÇéÈÏʶ¤Î·ÖÒ°¶¯Ïò¤ÈŒgÓû¯¤ËÏò¤±¤¿±·°Õ°Õ¤ÎÈ¡¤ê×é¤ßÒôÉù¸ÐÇéÈÏʶ¤Î·ÖÒ°¶¯Ïò¤ÈŒgÓû¯¤ËÏò¤±¤¿±·°Õ°Õ¤ÎÈ¡¤ê×é¤ß
ÒôÉù¸ÐÇéÈÏʶ¤Î·ÖÒ°¶¯Ïò¤ÈŒgÓû¯¤ËÏò¤±¤¿±·°Õ°Õ¤ÎÈ¡¤ê×é¤ß
Atsushi_Ando
?
°Õ²â±è±ð³§³¦°ù¾±±è³Ù¤Ç°ä³¢±õ¥¢¥×¥ê¥±©`¥·¥ç¥ó¿ª°k
°Õ²â±è±ð³§³¦°ù¾±±è³Ù¤Ç°ä³¢±õ¥¢¥×¥ê¥±©`¥·¥ç¥ó¿ª°k°Õ²â±è±ð³§³¦°ù¾±±è³Ù¤Ç°ä³¢±õ¥¢¥×¥ê¥±©`¥·¥ç¥ó¿ª°k
°Õ²â±è±ð³§³¦°ù¾±±è³Ù¤Ç°ä³¢±õ¥¢¥×¥ê¥±©`¥·¥ç¥ó¿ª°k
Shuto Suzuki
?
[261] ???????? ??????????? ???????????? ?????????
[261] ???????? ??????????? ???????????? ?????????[261] ???????? ??????????? ???????????? ?????????
[261] ???????? ??????????? ???????????? ?????????
NAVER D2
?
5·Ö¤Ç·Ö¤«¤ë²µ¾±³Ù¤Î°ù±ð´Ú²õ±è±ð³¦
5·Ö¤Ç·Ö¤«¤ë²µ¾±³Ù¤Î°ù±ð´Ú²õ±è±ð³¦5·Ö¤Ç·Ö¤«¤ë²µ¾±³Ù¤Î°ù±ð´Ú²õ±è±ð³¦
5·Ö¤Ç·Ö¤«¤ë²µ¾±³Ù¤Î°ù±ð´Ú²õ±è±ð³¦
ikdysfm
?
??? ????? - RNN?? BERT??
??? ????? - RNN?? BERT????? ????? - RNN?? BERT??
??? ????? - RNN?? BERT??
deepseaswjh
?
Veille 2.0 et ses outilsVeille 2.0 et ses outils
Veille 2.0 et ses outils
Dujol Lionel
?
Strat¨¦gie Webmarketing Wed'ze Strat¨¦gie Webmarketing Wed'ze
Strat¨¦gie Webmarketing Wed'ze
Philippe Guelpa-Bonaro
?
?????? ??? ???
?????? ??? ????????? ??? ???
?????? ??? ???
?? ?
?
Link prediction
Link predictionLink prediction
Link prediction
ybenjo
?
The Proxy Wars - MySQL Router, ProxySQL, MariaDB MaxScale
The Proxy Wars - MySQL Router, ProxySQL, MariaDB MaxScaleThe Proxy Wars - MySQL Router, ProxySQL, MariaDB MaxScale
The Proxy Wars - MySQL Router, ProxySQL, MariaDB MaxScale
Colin Charles
?
[DL݆Õi»á]Image-to-Image Translation with Conditional Adversarial Networks
[DL݆Õi»á]Image-to-Image Translation with Conditional Adversarial Networks[DL݆Õi»á]Image-to-Image Translation with Conditional Adversarial Networks
[DL݆Õi»á]Image-to-Image Translation with Conditional Adversarial Networks
Deep Learning JP
?
Low latency Java apps
Low latency Java appsLow latency Java apps
Low latency Java apps
Simon Ritter
?
Utiliser les r¨¦seaux sociaux pour promouvoir sa marqueUtiliser les r¨¦seaux sociaux pour promouvoir sa marque
Utiliser les r¨¦seaux sociaux pour promouvoir sa marque
Editoile
?
???? ??? ? ?? ??? ?? : Tajo on AWS
???? ??? ? ?? ??? ?? : Tajo on AWS???? ??? ? ?? ??? ?? : Tajo on AWS
???? ??? ? ?? ??? ?? : Tajo on AWS
Matthew (???)
?
Enabling independent teams by creating decoupled data flows
Enabling independent teams by creating decoupled data flowsEnabling independent teams by creating decoupled data flows
Enabling independent teams by creating decoupled data flows
confluent
?
¸ßË٤ʱ¶¾«¶ÈÖ¸ÊýévÊý±ð³æ±è¤ÎŒg×°
¸ßË٤ʱ¶¾«¶ÈÖ¸ÊýévÊý±ð³æ±è¤ÎŒg×°¸ßË٤ʱ¶¾«¶ÈÖ¸ÊýévÊý±ð³æ±è¤ÎŒg×°
¸ßË٤ʱ¶¾«¶ÈÖ¸ÊýévÊý±ð³æ±è¤ÎŒg×°
MITSUNARI Shigeo
?
Designing more efficient convolution neural network
Designing more efficient convolution neural networkDesigning more efficient convolution neural network
Designing more efficient convolution neural network
Dongyi Kim
?
???? ?? ??? ????
???? ?? ??? ???????? ?? ??? ????
???? ?? ??? ????
Yan So
?
???? ??????
???? ?????????? ??????
???? ??????
sprdd
?
Atelier : comment mettre en place un plan de communication sur les r¨¦seaux so...Atelier : comment mettre en place un plan de communication sur les r¨¦seaux so...
Atelier : comment mettre en place un plan de communication sur les r¨¦seaux so...
Editoile
?
ÒôÉù¸ÐÇéÈÏʶ¤Î·ÖÒ°¶¯Ïò¤ÈŒgÓû¯¤ËÏò¤±¤¿±·°Õ°Õ¤ÎÈ¡¤ê×é¤ß
ÒôÉù¸ÐÇéÈÏʶ¤Î·ÖÒ°¶¯Ïò¤ÈŒgÓû¯¤ËÏò¤±¤¿±·°Õ°Õ¤ÎÈ¡¤ê×é¤ßÒôÉù¸ÐÇéÈÏʶ¤Î·ÖÒ°¶¯Ïò¤ÈŒgÓû¯¤ËÏò¤±¤¿±·°Õ°Õ¤ÎÈ¡¤ê×é¤ß
ÒôÉù¸ÐÇéÈÏʶ¤Î·ÖÒ°¶¯Ïò¤ÈŒgÓû¯¤ËÏò¤±¤¿±·°Õ°Õ¤ÎÈ¡¤ê×é¤ß
Atsushi_Ando
?
°Õ²â±è±ð³§³¦°ù¾±±è³Ù¤Ç°ä³¢±õ¥¢¥×¥ê¥±©`¥·¥ç¥ó¿ª°k
°Õ²â±è±ð³§³¦°ù¾±±è³Ù¤Ç°ä³¢±õ¥¢¥×¥ê¥±©`¥·¥ç¥ó¿ª°k°Õ²â±è±ð³§³¦°ù¾±±è³Ù¤Ç°ä³¢±õ¥¢¥×¥ê¥±©`¥·¥ç¥ó¿ª°k
°Õ²â±è±ð³§³¦°ù¾±±è³Ù¤Ç°ä³¢±õ¥¢¥×¥ê¥±©`¥·¥ç¥ó¿ª°k
Shuto Suzuki
?
[261] ???????? ??????????? ???????????? ?????????
[261] ???????? ??????????? ???????????? ?????????[261] ???????? ??????????? ???????????? ?????????
[261] ???????? ??????????? ???????????? ?????????
NAVER D2
?
5·Ö¤Ç·Ö¤«¤ë²µ¾±³Ù¤Î°ù±ð´Ú²õ±è±ð³¦
5·Ö¤Ç·Ö¤«¤ë²µ¾±³Ù¤Î°ù±ð´Ú²õ±è±ð³¦5·Ö¤Ç·Ö¤«¤ë²µ¾±³Ù¤Î°ù±ð´Ú²õ±è±ð³¦
5·Ö¤Ç·Ö¤«¤ë²µ¾±³Ù¤Î°ù±ð´Ú²õ±è±ð³¦
ikdysfm
?
??? ????? - RNN?? BERT??
??? ????? - RNN?? BERT????? ????? - RNN?? BERT??
??? ????? - RNN?? BERT??
deepseaswjh
?
Veille 2.0 et ses outilsVeille 2.0 et ses outils
Veille 2.0 et ses outils
Dujol Lionel
?
Strat¨¦gie Webmarketing Wed'ze Strat¨¦gie Webmarketing Wed'ze
Strat¨¦gie Webmarketing Wed'ze
Philippe Guelpa-Bonaro
?
?????? ??? ???
?????? ??? ????????? ??? ???
?????? ??? ???
?? ?
?
Link prediction
Link predictionLink prediction
Link prediction
ybenjo
?
The Proxy Wars - MySQL Router, ProxySQL, MariaDB MaxScale
The Proxy Wars - MySQL Router, ProxySQL, MariaDB MaxScaleThe Proxy Wars - MySQL Router, ProxySQL, MariaDB MaxScale
The Proxy Wars - MySQL Router, ProxySQL, MariaDB MaxScale
Colin Charles
?
[DL݆Õi»á]Image-to-Image Translation with Conditional Adversarial Networks
[DL݆Õi»á]Image-to-Image Translation with Conditional Adversarial Networks[DL݆Õi»á]Image-to-Image Translation with Conditional Adversarial Networks
[DL݆Õi»á]Image-to-Image Translation with Conditional Adversarial Networks
Deep Learning JP
?
Low latency Java apps
Low latency Java appsLow latency Java apps
Low latency Java apps
Simon Ritter
?
Utiliser les r¨¦seaux sociaux pour promouvoir sa marqueUtiliser les r¨¦seaux sociaux pour promouvoir sa marque
Utiliser les r¨¦seaux sociaux pour promouvoir sa marque
Editoile
?
???? ??? ? ?? ??? ?? : Tajo on AWS
???? ??? ? ?? ??? ?? : Tajo on AWS???? ??? ? ?? ??? ?? : Tajo on AWS
???? ??? ? ?? ??? ?? : Tajo on AWS
Matthew (???)
?
Enabling independent teams by creating decoupled data flows
Enabling independent teams by creating decoupled data flowsEnabling independent teams by creating decoupled data flows
Enabling independent teams by creating decoupled data flows
confluent
?

Viewers also liked (20)

PyCon 2017 ?????? ???? ? 2 [????]
PyCon 2017 ?????? ???? ? 2 [????]PyCon 2017 ?????? ???? ? 2 [????]
PyCon 2017 ?????? ???? ? 2 [????]
Sumin Byeon
?
Docker
DockerDocker
Docker
Huey Park
?
[??????? ?: ???] ????? ????? ?????? ??????? - ??? AWS? Docker ???
[??????? ?: ???] ????? ????? ?????? ??????? - ??? AWS? Docker ???[??????? ?: ???] ????? ????? ?????? ??????? - ??? AWS? Docker ???
[??????? ?: ???] ????? ????? ?????? ??????? - ??? AWS? Docker ???
Sumin Byeon
?
???? ?? ??, ??, ??? ?? ??? ???? #if - #endif ???? NDC2012
???? ?? ??, ??, ??? ?? ??? ???? #if - #endif ???? NDC2012???? ?? ??, ??, ??? ?? ??? ???? #if - #endif ???? NDC2012
???? ?? ??, ??, ??? ?? ??? ???? #if - #endif ???? NDC2012
Esun Kim
?
8??? ???? ?? 8?? ??
8??? ???? ?? 8?? ??8??? ???? ?? 8?? ??
8??? ???? ?? 8?? ??
Harns (Nak-Hyoung) Kim
?
Approximate nearest neighbor methods and vector models ¨C NYC ML meetup
Approximate nearest neighbor methods and vector models ¨C NYC ML meetupApproximate nearest neighbor methods and vector models ¨C NYC ML meetup
Approximate nearest neighbor methods and vector models ¨C NYC ML meetup
Erik Bernhardsson
?
??? ???? SNS? ???? ??
??? ???? SNS? ???? ????? ???? SNS? ???? ??
??? ???? SNS? ???? ??
Harns (Nak-Hyoung) Kim
?
Online game server on Akka.NET (NDC2016)
Online game server on Akka.NET (NDC2016)Online game server on Akka.NET (NDC2016)
Online game server on Akka.NET (NDC2016)
Esun Kim
?
Custom fabric shader for unreal engine 4
Custom fabric shader for unreal engine 4Custom fabric shader for unreal engine 4
Custom fabric shader for unreal engine 4
?? ?
?
Behavior Tree in Unreal engine 4
Behavior Tree in Unreal engine 4Behavior Tree in Unreal engine 4
Behavior Tree in Unreal engine 4
Huey Park
?
Re:Zero?? ???? ?? ???? ??
Re:Zero?? ???? ?? ???? ??Re:Zero?? ???? ?? ???? ??
Re:Zero?? ???? ?? ???? ??
Chris Ohk
?
Developing Success in Mobile with Unreal Engine 4 | David Stelzer
Developing Success in Mobile with Unreal Engine 4 | David StelzerDeveloping Success in Mobile with Unreal Engine 4 | David Stelzer
Developing Success in Mobile with Unreal Engine 4 | David Stelzer
Jessica Tams
?
????? ?? ??? ??? ??? ???
????? ?? ??? ??? ??? ???????? ?? ??? ??? ??? ???
????? ?? ??? ??? ??? ???
Lee Dustin
?
Deep learning as_WaveExtractor
Deep learning as_WaveExtractorDeep learning as_WaveExtractor
Deep learning as_WaveExtractor
?? ?
?
Profiling - ??? ??? ?????
Profiling - ??? ??? ?????Profiling - ??? ??? ?????
Profiling - ??? ??? ?????
Heungsub Lee
?
???? ??? ?? ???? ?? 3??
???? ??? ?? ???? ?? 3?????? ??? ?? ???? ?? 3??
???? ??? ?? ???? ?? 3??
Harns (Nak-Hyoung) Kim
?
Luigi presentation NYC Data Science
Luigi presentation NYC Data ScienceLuigi presentation NYC Data Science
Luigi presentation NYC Data Science
Erik Bernhardsson
?
NDC16 ?????? 1??? ????
NDC16 ?????? 1??? ????NDC16 ?????? 1??? ????
NDC16 ?????? 1??? ????
Daehoon Han
?
NDC17 ?? ???? ??? ?????: 8?, 3?? ??, 4?? ??
NDC17 ?? ???? ??? ?????: 8?, 3?? ??, 4?? ??NDC17 ?? ???? ??? ?????: 8?, 3?? ??, 4?? ??
NDC17 ?? ???? ??? ?????: 8?, 3?? ??, 4?? ??
Imseong Kang
?
??? ???? ?? ???? ?????
??? ???? ?? ???? ???????? ???? ?? ???? ?????
??? ???? ?? ???? ?????
?? ?
?
PyCon 2017 ?????? ???? ? 2 [????]
PyCon 2017 ?????? ???? ? 2 [????]PyCon 2017 ?????? ???? ? 2 [????]
PyCon 2017 ?????? ???? ? 2 [????]
Sumin Byeon
?
[??????? ?: ???] ????? ????? ?????? ??????? - ??? AWS? Docker ???
[??????? ?: ???] ????? ????? ?????? ??????? - ??? AWS? Docker ???[??????? ?: ???] ????? ????? ?????? ??????? - ??? AWS? Docker ???
[??????? ?: ???] ????? ????? ?????? ??????? - ??? AWS? Docker ???
Sumin Byeon
?
???? ?? ??, ??, ??? ?? ??? ???? #if - #endif ???? NDC2012
???? ?? ??, ??, ??? ?? ??? ???? #if - #endif ???? NDC2012???? ?? ??, ??, ??? ?? ??? ???? #if - #endif ???? NDC2012
???? ?? ??, ??, ??? ?? ??? ???? #if - #endif ???? NDC2012
Esun Kim
?
Approximate nearest neighbor methods and vector models ¨C NYC ML meetup
Approximate nearest neighbor methods and vector models ¨C NYC ML meetupApproximate nearest neighbor methods and vector models ¨C NYC ML meetup
Approximate nearest neighbor methods and vector models ¨C NYC ML meetup
Erik Bernhardsson
?
Online game server on Akka.NET (NDC2016)
Online game server on Akka.NET (NDC2016)Online game server on Akka.NET (NDC2016)
Online game server on Akka.NET (NDC2016)
Esun Kim
?
Custom fabric shader for unreal engine 4
Custom fabric shader for unreal engine 4Custom fabric shader for unreal engine 4
Custom fabric shader for unreal engine 4
?? ?
?
Behavior Tree in Unreal engine 4
Behavior Tree in Unreal engine 4Behavior Tree in Unreal engine 4
Behavior Tree in Unreal engine 4
Huey Park
?
Re:Zero?? ???? ?? ???? ??
Re:Zero?? ???? ?? ???? ??Re:Zero?? ???? ?? ???? ??
Re:Zero?? ???? ?? ???? ??
Chris Ohk
?
Developing Success in Mobile with Unreal Engine 4 | David Stelzer
Developing Success in Mobile with Unreal Engine 4 | David StelzerDeveloping Success in Mobile with Unreal Engine 4 | David Stelzer
Developing Success in Mobile with Unreal Engine 4 | David Stelzer
Jessica Tams
?
????? ?? ??? ??? ??? ???
????? ?? ??? ??? ??? ???????? ?? ??? ??? ??? ???
????? ?? ??? ??? ??? ???
Lee Dustin
?
Deep learning as_WaveExtractor
Deep learning as_WaveExtractorDeep learning as_WaveExtractor
Deep learning as_WaveExtractor
?? ?
?
Profiling - ??? ??? ?????
Profiling - ??? ??? ?????Profiling - ??? ??? ?????
Profiling - ??? ??? ?????
Heungsub Lee
?
Luigi presentation NYC Data Science
Luigi presentation NYC Data ScienceLuigi presentation NYC Data Science
Luigi presentation NYC Data Science
Erik Bernhardsson
?
NDC16 ?????? 1??? ????
NDC16 ?????? 1??? ????NDC16 ?????? 1??? ????
NDC16 ?????? 1??? ????
Daehoon Han
?
NDC17 ?? ???? ??? ?????: 8?, 3?? ??, 4?? ??
NDC17 ?? ???? ??? ?????: 8?, 3?? ??, 4?? ??NDC17 ?? ???? ??? ?????: 8?, 3?? ??, 4?? ??
NDC17 ?? ???? ??? ?????: 8?, 3?? ??, 4?? ??
Imseong Kang
?
??? ???? ?? ???? ?????
??? ???? ?? ???? ???????? ???? ?? ???? ?????
??? ???? ?? ???? ?????
?? ?
?

Similar to ?? ???? ??? ??? ?? (20)

c++ opencv tutorial
c++ opencv tutorialc++ opencv tutorial
c++ opencv tutorial
TaeKang Woo
?
????? - ??? ???? ??? (Colab? ????)
????? - ??? ???? ??? (Colab? ????)????? - ??? ???? ??? (Colab? ????)
????? - ??? ???? ??? (Colab? ????)
ansuhyun927
?
??? ???? in Python Open Source - PYCON KOREA 2020
??? ???? in Python Open Source - PYCON KOREA 2020??? ???? in Python Open Source - PYCON KOREA 2020
??? ???? in Python Open Source - PYCON KOREA 2020
Kenneth Ceyer
?
2015 ?2? ??? ?? ??? - ????? ?? (16? ???)
2015 ?2? ??? ?? ??? - ????? ?? (16? ???)2015 ?2? ??? ?? ??? - ????? ?? (16? ???)
2015 ?2? ??? ?? ??? - ????? ?? (16? ???)
khuhacker
?
7?? ??? ?? - ??? ???
7?? ??? ?? - ??? ???7?? ??? ?? - ??? ???
7?? ??? ?? - ??? ???
HyeonSeok Choi
?
??? ??? ?? ? ?? ???? ??? UX
??? ??? ?? ? ?? ???? ??? UX??? ??? ?? ? ?? ???? ??? UX
??? ??? ?? ? ?? ???? ??? UX
Dae Yeon Jin
?
Python ??: ??? ??? ??? ??
Python ??: ??? ??? ??? ??Python ??: ??? ??? ??? ??
Python ??: ??? ??? ??? ??
? ?
?
[0326 ???] deferred shading
[0326 ???] deferred shading[0326 ???] deferred shading
[0326 ???] deferred shading
MinGeun Park
?
??? ? ?? ?? ?? 101 (Mobile Application Performance Analysis Methodology 101)
??? ? ?? ?? ?? 101 (Mobile Application Performance Analysis Methodology 101) ??? ? ?? ?? ?? 101 (Mobile Application Performance Analysis Methodology 101)
??? ? ?? ?? ?? 101 (Mobile Application Performance Analysis Methodology 101)
YoungSu Son
?
Human Pose Estimation ?? ??? ???? ??? ??
Human Pose Estimation ?? ??? ???? ??? ??Human Pose Estimation ?? ??? ???? ??? ??
Human Pose Estimation ?? ??? ???? ??? ??
ssuser39b2da
?
???? "??? ??? ??? ?? ?? ?? ???"????? ???
???? "??? ??? ??? ?? ?? ?? ???"????? ??????? "??? ??? ??? ?? ?? ?? ???"????? ???
???? "??? ??? ??? ?? ?? ?? ???"????? ???
ssuser39b2da
?
????05
????05????05
????05
herojoon1378
?
[Ndc11 ???] deferred shading
[Ndc11 ???] deferred shading[Ndc11 ???] deferred shading
[Ndc11 ???] deferred shading
MinGeun Park
?
[Let's Swift 2019] iOS ??? ????? ?? ? ? ?? ???
[Let's Swift 2019] iOS ??? ????? ?? ? ? ?? ???[Let's Swift 2019] iOS ??? ????? ?? ? ? ?? ???
[Let's Swift 2019] iOS ??? ????? ?? ? ? ?? ???
Doyoung Gwak
?
11_?? ?? ??? ?? ?? ???
11_?? ?? ??? ?? ?? ???11_?? ?? ??? ?? ?? ???
11_?? ?? ??? ?? ?? ???
noerror
?
[NDC14] ????? 2D??? ??? ?? ?? ? ????? ????[??????]
[NDC14] ????? 2D??? ??? ?? ?? ? ????? ????[??????][NDC14] ????? 2D??? ??? ?? ?? ? ????? ????[??????]
[NDC14] ????? 2D??? ??? ?? ?? ? ????? ????[??????]
SeungWon Lee
?
NDC 2017 ??? NEXON ZERO (?? ??) ???? ????? ?? ?? ? ?? ?? ????
NDC 2017 ??? NEXON ZERO (?? ??) ???? ????? ?? ?? ? ?? ?? ????NDC 2017 ??? NEXON ZERO (?? ??) ???? ????? ?? ?? ? ?? ?? ????
NDC 2017 ??? NEXON ZERO (?? ??) ???? ????? ?? ?? ? ?? ?? ????
Jaeseung Ha
?
??? ????? ??2 - ??? ???? ?? ?????, ??? ???? ?? (2020? ???)
??? ????? ??2 - ??? ???? ?? ?????, ??? ???? ?? (2020? ???)??? ????? ??2 - ??? ???? ?? ?????, ??? ???? ?? (2020? ???)
??? ????? ??2 - ??? ???? ?? ?????, ??? ???? ?? (2020? ???)
Tae Young Lee
?
c++ opencv tutorial
c++ opencv tutorialc++ opencv tutorial
c++ opencv tutorial
TaeKang Woo
?
????? - ??? ???? ??? (Colab? ????)
????? - ??? ???? ??? (Colab? ????)????? - ??? ???? ??? (Colab? ????)
????? - ??? ???? ??? (Colab? ????)
ansuhyun927
?
??? ???? in Python Open Source - PYCON KOREA 2020
??? ???? in Python Open Source - PYCON KOREA 2020??? ???? in Python Open Source - PYCON KOREA 2020
??? ???? in Python Open Source - PYCON KOREA 2020
Kenneth Ceyer
?
2015 ?2? ??? ?? ??? - ????? ?? (16? ???)
2015 ?2? ??? ?? ??? - ????? ?? (16? ???)2015 ?2? ??? ?? ??? - ????? ?? (16? ???)
2015 ?2? ??? ?? ??? - ????? ?? (16? ???)
khuhacker
?
??? ??? ?? ? ?? ???? ??? UX
??? ??? ?? ? ?? ???? ??? UX??? ??? ?? ? ?? ???? ??? UX
??? ??? ?? ? ?? ???? ??? UX
Dae Yeon Jin
?
Python ??: ??? ??? ??? ??
Python ??: ??? ??? ??? ??Python ??: ??? ??? ??? ??
Python ??: ??? ??? ??? ??
? ?
?
[0326 ???] deferred shading
[0326 ???] deferred shading[0326 ???] deferred shading
[0326 ???] deferred shading
MinGeun Park
?
??? ? ?? ?? ?? 101 (Mobile Application Performance Analysis Methodology 101)
??? ? ?? ?? ?? 101 (Mobile Application Performance Analysis Methodology 101) ??? ? ?? ?? ?? 101 (Mobile Application Performance Analysis Methodology 101)
??? ? ?? ?? ?? 101 (Mobile Application Performance Analysis Methodology 101)
YoungSu Son
?
Human Pose Estimation ?? ??? ???? ??? ??
Human Pose Estimation ?? ??? ???? ??? ??Human Pose Estimation ?? ??? ???? ??? ??
Human Pose Estimation ?? ??? ???? ??? ??
ssuser39b2da
?
???? "??? ??? ??? ?? ?? ?? ???"????? ???
???? "??? ??? ??? ?? ?? ?? ???"????? ??????? "??? ??? ??? ?? ?? ?? ???"????? ???
???? "??? ??? ??? ?? ?? ?? ???"????? ???
ssuser39b2da
?
[Ndc11 ???] deferred shading
[Ndc11 ???] deferred shading[Ndc11 ???] deferred shading
[Ndc11 ???] deferred shading
MinGeun Park
?
[Let's Swift 2019] iOS ??? ????? ?? ? ? ?? ???
[Let's Swift 2019] iOS ??? ????? ?? ? ? ?? ???[Let's Swift 2019] iOS ??? ????? ?? ? ? ?? ???
[Let's Swift 2019] iOS ??? ????? ?? ? ? ?? ???
Doyoung Gwak
?
11_?? ?? ??? ?? ?? ???
11_?? ?? ??? ?? ?? ???11_?? ?? ??? ?? ?? ???
11_?? ?? ??? ?? ?? ???
noerror
?
[NDC14] ????? 2D??? ??? ?? ?? ? ????? ????[??????]
[NDC14] ????? 2D??? ??? ?? ?? ? ????? ????[??????][NDC14] ????? 2D??? ??? ?? ?? ? ????? ????[??????]
[NDC14] ????? 2D??? ??? ?? ?? ? ????? ????[??????]
SeungWon Lee
?
NDC 2017 ??? NEXON ZERO (?? ??) ???? ????? ?? ?? ? ?? ?? ????
NDC 2017 ??? NEXON ZERO (?? ??) ???? ????? ?? ?? ? ?? ?? ????NDC 2017 ??? NEXON ZERO (?? ??) ???? ????? ?? ?? ? ?? ?? ????
NDC 2017 ??? NEXON ZERO (?? ??) ???? ????? ?? ?? ? ?? ?? ????
Jaeseung Ha
?
??? ????? ??2 - ??? ???? ?? ?????, ??? ???? ?? (2020? ???)
??? ????? ??2 - ??? ???? ?? ?????, ??? ???? ?? (2020? ???)??? ????? ??2 - ??? ???? ?? ?????, ??? ???? ?? (2020? ???)
??? ????? ??2 - ??? ???? ?? ?????, ??? ???? ?? (2020? ???)
Tae Young Lee
?

?? ???? ??? ??? ??

  • 1. ?? ???? ??? ???? ??? LG CNS Advanced Analytics Center
  • 2. ??????? ?? ??? ? ?? ???? ?? ????? ?? ??? ¡ü http://www.datanami.com/2012/12/24/how_object_storage_and_information_dispersal_address_big_data_challenges/
  • 3. ??? ?? ? ?????, ???? ?? (??) ? ??? ?? 11?? ¨C ???? ?????? ? ?????, ? ??? (CAD) ¨C LG CNS ???? ?? ? ?????, ????/?? ? ???? ?????/ ????/???? ?? ??? (neuralix@gmail.com) www.facebook.com/groups/cvprml (>2,200?) ¡ù iPad 1, iPhone 5GS ? ??? ??, ??? ????? ? ??? ??+a? ?? ?????
  • 4. ?? ??????? ???? ? ????? ?? ??? ????? ???? ??? ???? ??? ??? ?? ???? : ¡ù ?????? ¡®??¡¯? ???? ?? ???? ?? ? ??/?? ?? (¡°???? ?? ???? ???? ??¡±)
  • 6. ? ????¡­ ? Data Type ¨C Image (O) ¨C Video (X) ? Language ¨C Python (2.7.X) ? Library (???) ¨C scikit-image NOT ? GPU(CUDA), 3D, ????, ???? ????, ??? ???? ¡ù ????? ??? ??? ??? ?? ?? ????
  • 7. ?? ??? ?? ? Digitizing Figure Credit : Amin Allalou ¡ù ??? ??. ? ??? ?? ??? ?? ???? ????? ?
  • 8. ?? ??? ?? ? ????? Figure Credit : Alex Lin 1. ????? ?? 2. ??? ?? ?? ??
  • 9. ?? ??? ?? ? 256 ?? ?? Figure Credit : Ruye Wang Weber-Fechner law ¡°? ??? ?? ??? ?? ? ?? ??¡± (??? ??) ?? ??? ????? ? ??? ??
  • 10. ?? ?? ?? ? ?? ?? ?? ?? ?? ???? ?? ??? ?? ??? ??? ?? BMP Ÿo ? (????) N/A ? ??? ??, Windows OS? TIFF ??? ?? ??, ?? ??? PNG ? ??? ?? ??? ?? GIF ÓÐ ?? ?? ???? ????, ????? ?? ? ??(:?? GIF) JPG ?? ?? ?? ?? ??? ??? ?? ?? ??? ???? ??? ???
  • 11. ? ? ? Basic Processing ? Region Processing ? Edge/Contour ? Point/Line/Corner ? Matching ? Preprocessing ? Color ¡ù ??? ????? ??
  • 12. Basic Processing ¡°??? ?? ? ? ? ??.¡± (?, ?????...)
  • 13. Load/Save and Display ? PIL (Python Image Library) ¨C Import Module ¨C Load ¨C Display ¨C Save >> from PIL import Image >> from pylab import * >> Img = Image.fromarray(img) >> Img.save('C:mandrill_new.bmp') >> img = array(Image.open('C:mandrill.bmp')) >> imshow(img)
  • 14. ?? ?? ? ??? ??? ??? matplotlib? ? ????? pylab? ??? ? ??? ? numpy? ?? ?? ? ? ???, ?? ? ???? ??? ??? ?? ??? ?? ?? ?? ????? ? ?? ? ?? ??? ?? ?? ??? ???? ?? ??? ?? ?? ? ?? ( ?? ?, neuralix@gmail.com ? inform ?? )
  • 15. Load/Save and Display ? skimage >> from skimage import io >> io.imsave( filename, logo ) >> imshow( img ) ? opencv >> import numpy as np >> import cv2 >> cv2.imwrite( filename, img) >> cv2.imshow('image', img) >> camera = io.imread( filename ) >> img = cv2.imread( filename, 0 ) ¡ù URL? ??? ??
  • 16. Pixel Operation ? Get pixel value ? Put Pixel Value ? Area Operation >> print img[ i ][ j ][ k ] for i in range(img.shape[0]): for j in range(img.shape[1]): for k in range(img.shape[2]): if i>=200 and i<300: if j>=200 and j<300: img[i][j][k] = 0 * img[i][j][k] >> img[ i ][ j ][ k ] = 0 >> img[200:300][200:300] = 0 * img[200:300][200:300] or Simply,
  • 17. Line Drawing ? DDA (Digital Differential Analyzer) >> from skimage.draw import line, set_color >> rr, cc = line(x1, y1, x2, y2) >> set_color(img, (rr, cc), 1) >> imshow(img) ¡ù ?? ??? ??? ??
  • 18. Polygon Drawing ? ??? ??? >> from skimage.draw import polygon >> img = np.zeros((width, height), dtype=np.uint8) >> x = np.array([x1, x2, x3, x4, ¡­]) >> y = np.array([y1, y2, y3, y4, ¡­]) >> rr, cc = polygon(y, x) >> img[rr, cc] = 1
  • 19. Picking Points (¡°ginput¡±) ? ??? ??? ??? ??? ?? >> from PIL import Image >> from pylab import * >> img = array(Image.open('C:mandrill.bmp')) >> imshow(img) >> print 'Please click 3 points' >> x = ginput(3) >> print 'you clicked:',x >> show() >> x you clicked: [(16.737903225806448, 18.705645161 290249), (406.85887096774195, 23.2419354838709 18), (227.22177419354841, 242.79838709677415)] ¡ù ??? ??? MATLAB? ?? ?? (Graphical INPUT)??. ?? ?? ??? ???? ?????? ?.
  • 21. Thresholding (Binarizing) ? Otsu¡¯s (Automatic) Thresholding >> from skimage import data >> from skimage.filter import threshold_otsu, threshold_adaptive >> from skimage import color >> img = io.imread('C:Mandrill.bmp') >> img_g = color.rgb2grey(img) >> val_thresh = threshold_otsu(img_g) >> img_bw = im_g > val_thresh >> io.imshow( img_bw ) Figure Credit : https://software.intel.com/sites/products/documentation/hpc/ipp/ippi/ippi_ch7/functn_ComputeThreshold_Otsu.html ¡°Blob¡±
  • 22. Labeling ? Connected Components Labeling http://engineersphere.com/biomedical-engineering/biomedical-image-processing-iii.html >> from skimage.morphology import label, closing, square >> from skimage.color import label2rgb ¡­ >> val_thresh = threshold_otsu(img) >> img_label = label(val_thresh) >> image_label_rgb = label2rgb(label_image) >> imshow(image_label_rgb) ¡ù Check neighborhood convention first! (8-neighborhood is complete, 4-neighbor is not.)
  • 23. Morphological Operation http://www.dspguide.com/ch25/4.htm >> from skimage.morphology import erosion, dilation, opening, closing, white_tophat >> from skimage.morphology import black_tophat, skeletonize, convex_hull_image >> from skimage.morphology import disk ¡­ >> selem = disk(6) >> img_eroded = erosion(img, selem) >> imshow(img_eroded, cmap=plt.cm.gray) >> img_dilated = dilation(img, selem) >> imshow(img_dilated, cmap=plt.cm.gray) https://www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/ImageProcessing-html/topic4.htm ? 1) ??? <????/????>, 2) ?? ?? ??? <??/??? ??>, 3) <??? ???/???? ????> ¡ù Structuring element (:selem)? ??? ?? ? ?? ??? ¡ù LIDAR/RADAR ?? ?? ???? ??
  • 24. Boolean Operation ? Image Boolean Operations
  • 25. Flood Fill ? Filling the holes >> from scipy import ndimage >> from skimage.filter import canny >> img_edges = canny(img/255.) >> img_filled = ndimage.binary_fill_holes(img_edges)
  • 26. Segmentation ? Mean Shift >> import cv2 >> import pymeanshift as pms >> img_orig = cv2.imread("example.png") >>(img_segmented, img_label, number_regions) = pms.segment(img_orig, spatial_radius=6, range_radius=4.5, min_density=50) https://code.google.com/p/pymeanshift/ ¡ù ???(Segmentation)? ??? ??, ?? ?? ??? ?? ???? ??, ???? ? ??? ??. GraphCuts, GrabCuts? ??, Mean Shift(:Moving Averaging)? ??, Chan¡¯s Active Contour without Edges? ?? ?? ???
  • 27. Edge / Contour ¡ù ??? ?, ???
  • 28. Skeletonization ? Skeletonization http://homepages.inf.ed.ac.uk/rbf/HIPR2/thin.htm >> from skimage.morphology import skeletonize >> img_skeleton = skeletonize(image) >> imshow(img_skeleton, cmap=plt.cm.gray)
  • 29. Contour Finding ? Contour Finding >> import numpy as np >> import matplotlib.pyplot as plt >> from skimage import measure >> x, y = np.ogrid[-np.pi:np.pi:100j, -np.pi:np.pi:100j] >> r = np.sin(np.exp((np.sin(x)**3 + np.cos(y)**2))) >> contours = measure.find_contours(r, 0.8) >> fig, ax = plt.subplots() >> ax.imshow(r, interpolation='nearest', cmap=plt.cm.gray) >> for n, contour in enumerate(contours): ax.plot(contour[:, 1], contour[:, 0], linewidth=2) >> plt.show() ¡ù ???? ? ??? ??? ????
  • 30. Edge Detection (1of2) ? Canny Edge Detection >> import numpy as np >> import matplotlib.pyplot as plt >> from scipy import ndimage >> from skimage import filter >> img_edges = filter.canny(img, sigma=3) >> imshow(img_edges, cmap=plt.cm.gray) ¡ù ???? ???? ??? ?? ??? ?? ??? ? ??? ???? ??? ????? ???? ?? ? ??? ? ???? (1???? ???). ¡ù ?? ??? Thresholding ? ?? ??? ??
  • 31. Edge Detection (2of2) ? Canny Edge Detection http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MARBLE/low/edges/canny.htm http://news.mynavi.jp/photo/series/computer_vision/040/images/014l.jpg http://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm ¡ù ?? ?? ??? ???? ?? (¡°Canny¡±)
  • 32. Point / Line / Corner
  • 33. Hough Transform (1of2) ? Hough Transform http://docs.opencv.org/modules/imgproc/doc/feature_detection.html
  • 34. Hough Transform (2of2) ? Hough Transform http://www.aiaa-daycin.org/node/430 http://campar.in.tum.de/Students/DaPentenrieder >>from skimage.transform import (hough_line, hough_l ine_peaks, probabilistic_hough_line) >> edges = canny(image, 2, 1, 25) >> lines = probabilistic_hough_line(edges, threshold= 10, line_length=5, line_gap=3) >> for line in lines: p0, p1 = line plt.plot((p0[0], p1[0]), (p0[1], p1[1])) >> plt.show() ¡ù rho, theta ??? ? ??? x, y ??? ?? ? ??? ??? ¡ù ? ?? ?? ?? ??? rho, theta ???? voting?? ????? ???? ??? ???
  • 35. Corner Detection (1of2) ? Harris Corner Detection http://www.krankerkaktus.de/Portfolio/GraphicsProgramming https://www.ee.iitb.ac.in/~sumantra/courses/ip/assignment_1.html >> from skimage.feature import corner_harris, corner _subpix, corner_peaks >> coords = corner_peaks(corner_harris(image), min_ distance=5) >> coords_subpix = corner_subpix(image, coords, win dow_size=13) >> fig, ax = plt.subplots() >> ax.imshow(image, interpolation='nearest', cmap=p lt.cm.gray) >> ax.plot(coords[:, 1], coords[:, 0], '.b', markersize=3) >> ax.plot(coords_subpix[:, 1], coords_subpix[:, 0], '+r', markersize=15) >> ax.axis((0, 350, 350, 0)) >> plt.show()
  • 36. Corner Detection (2of2) ? Harris Corner Detection http://www.mathworks.co.kr/kr/help/images/detect-corners-in-images.html http://miac.unibas.ch/BIA/05-LandmarkBasedRegistration.html ¡ù ??? ??? ????? ?????? ??? ?, ???? ????? lambda 1, 2? ?? 0?? ? ? ?, ???? ?? ???? Corner? ???? ??.
  • 38. Image Matching ? Template Matching >>import numpy as np >>import matplotlib.pyplot as plt >>from skimage import data >>from skimage.feature import match_template >>result = match_template( img_whole, img_template )
  • 39. Noise Suppression ? Denoising ? Median >> from skimage import data, img_as_float >> from skimage.restoration import denoise_tv_ch ambolle, denoise_bilateral ¡­ >> imshow(denoise_bilateral(img, sigma_range=0.1, sigma_spatial=15)) >> from skimage.morphology import disk >> from skimage.filter.rank import median ¡­ >> img_med = median(img, disk(5))
  • 40. Contrast ? Histogram Equalizing >> from skimage import exposure ¡­ >> img_eq = exposure.equalize_hist(img) Figure Credit : James Fishbaugh ¡ù ????? ????? ??? ? ?????? ??? ?? ??? ?? ???. ?? ?? ? ????? ?????? CDF? ??? ????? ????? ??? ?? ?? ?? ?? ? ???? ??? ??? ?????? ???.
  • 41. Rotation ? Rotation with Interpolation http://www.darktable.org/2012/06/upcoming-features-new-interpolation-modes-and-better-resize/dt-rotation-grid/ >> from skimage.transform import rotate ¡­ >> img = rotate(img, 90, resize=True).shape >> import numpy as np ¡­ >> coord_center = tuple(np.array(image.shape)/2) >> rot_mat = cv2.getRotationMatrix2D(coord_center,angle,1.0) >> result = cv2.warpAffine(image, rot_mat, image.shape,flags=cv2.I NTER_LINEAR) ¡ù ?? rotation? resizing? ?? ???? ??? interpolation? ?? ??? ? ?? ?. Skimage? ?? ??? ???? ?? ???? opencv? ??. ?? ima ge.shape,flags ??? ??? ??? ???.
  • 42. Color (1of3) ? RGB ? Grey Luminousity (Grey Value) Average LightnessOriginal (Color) Figure Credit : Hohn D. Cook (http://www.johndcook.com/blog/2009/08/24/algorithms-convert-color-grayscale/) >> from skimage.color import rgb2gray >> from skimage import data ¡­ >> img_gray = rgb2gray(img) // Luminousity
  • 43. Color (2of3) ? Radiometry ? Photometry ? Colorimetry http://www.screentekinc.com/resource-center/photometry-and-colorimetry.shtml http://www.chromapure.com/products-d3pro.asp
  • 44. Color (3of3) ? Color Space http://en.wikipedia.org/wiki/File:RGB_sliders.svg https://software.intel.com/sites/products/documentation/hpc/ipp/ippi/ippi_ch6/ch6_color_models.html ¡ù ??????? 1? 255? ?? ¡ù RGB? CMY? ?? (Cyan: R=0, G=255, B=255)
  • 46. Kalman Filtering ? Kalman Filtering # Kalman filter example demo in Python # A Python implementation of the example given in pages 11-15 of "An # Introduction to the Kalman Filter" by Greg Welch and Gary Bishop, # University of North Carolina at Chapel Hill, Department of Computer # Science, TR 95-041, # http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html # by Andrew D. Straw import numpy import pylab # intial parameters n_iter = 50 sz = (n_iter,) # size of array x = -0.37727 # truth value (typo in example at top of p. 13 calls this z) z = numpy.random.normal(x,0.1,size=sz) # observations (normal about x, sigma=0.1) Q = 1e-5 # process variance # allocate space for arrays xhat=numpy.zeros(sz) # a posteri estimate of x P=numpy.zeros(sz) # a posteri error estimate xhatminus=numpy.zeros(sz) # a priori estimate of x Pminus=numpy.zeros(sz) # a priori error estimate K=numpy.zeros(sz) # gain or blending factor R = 0.1**2 # estimate of measurement variance, change to see effect # intial guesses xhat[0] = 0.0 P[0] = 1.0 for k in range(1,n_iter): # time update xhatminus[k] = xhat[k-1] Pminus[k] = P[k-1]+Q # measurement update K[k] = Pminus[k]/( Pminus[k]+R ) xhat[k] = xhatminus[k]+K[k]*(z[k]-xhatminus[k]) P[k] = (1-K[k])*Pminus[k] pylab.figure() pylab.plot(z,'k+',label='noisy measurements') pylab.plot(xhat,'b-',label='a posteri estimate') pylab.axhline(x,color='g',label='truth value') pylab.legend() pylab.xlabel('Iteration') pylab.ylabel('Voltage') pylab.figure() valid_iter = range(1,n_iter) # Pminus not valid at step 0 pylab.plot(valid_iter,Pminus[valid_iter],label='a priori error estimate') pylab.xlabel('Iteration') pylab.ylabel('$(Voltage)^2$') pylab.setp(pylab.gca(),'ylim',[0,.01]) pylab.show() http://wiki.scipy.org/Cookbook/KalmanFiltering ¡ù z : ???? ??? ?? xhat : ??? ?? ¡ù ¡°?? ???? ?? ??? ??? ?? ???.¡± (NASA) ¡°Stanley? ??? ?? ????.¡± (???? ??) ¡ù ??? ???? ??? ???? ??
  • 47. ???? ? ???? Package, Tools ¨C Anaconda Distribution https://store.continuum.io/cshop/anaconda ¡ù opencv, scikit-image, spyder? ?? ?? ¨C Scikit-Image Package ? http://scikit-image.org ? http://scikit-image.org/docs/dev/auto_examples ¨C Pycharm IDE http://www.jetbrains.com/pycharm ¨C ?? Spyder IDE, iPython QTConsole, Sublime Text 2 ? ? ? (?? ? ???) ¨C http://book.naver.com/bookdb/book_detail.nhn?bid=6191572 ¨C http://book.naver.com/bookdb/book_detail.nhn?bid=6802764 ¨C http://book.naver.com/bookdb/book_detail.nhn?bid=6332184 ¨C http://kangcom.com/sub/view.asp?sku=200311040002 (??) ? ? (??) ¨C http://www.amazon.com/Machine-Vision-Ramesh-Jain/dp/0070320187 ¨C http://www.amazon.com/Computer-Vision-Algorithms-Applications- Science/dp/1848829345/ref=sr_1_1?s=books&ie=UTF8&qid=1401379429&sr=1- 1&keywords=szeliski+computer+vision
  • 48. ?