Dokumen tersebut menjelaskan tentang sistem bahan bakar pada kendaraan bermotor. Sistem ini terdiri dari beberapa komponen utama seperti tangki bahan bakar, saluran bahan bakar, saringan, pompa bahan bakar, dan karburator. Karburator berfungsi untuk mengubah bahan bakar cair menjadi campuran udara dan bahan bakar yang tepat sesuai kondisi pengendaraan melalui berbagai sistem seperti sistem pelampung, kecepatan tinggi,
Lubricating oil is essential for piston engines to reduce friction and wear between moving parts. It also removes heat from the engine. There are two main types of lubrication systems - wet sump and dry sump. Wet sump systems carry the oil in the engine crankcase, while dry sump systems store oil externally. Pressure lubrication is the primary method used, relying on pumps to circulate pressurized oil through the engine. Filters help clean the oil before it reaches critical components.
Motor 2 tak bergerak dengan piston yang bergerak antara titik mati atas (TMA) dan titik mati bawah (TMB). Di TMA, campuran bahan bakar dan udara terkompresi dan dinyalakan oleh busi, menghasilkan tekanan ekspansi yang mendorong piston ke TMB. Di TMB, campuran baru disisipkan ke ruang pembakaran dan siklus berulang.
Dokumen tersebut menjelaskan prinsip kerja motor bensin 4-tak dan 2-tak, yang mencakup empat langkah utama pada motor 4-tak (hisap, kompresi, kerja, buang) dan dua langkah pada motor 2-tak (hisap dan kompresi, pembakaran dan buang). Juga dibahas perbandingan keunggulan dan kelemahan antara kedua jenis motor tersebut.
The document discusses various sources of emissions from internal combustion engines and emission control strategies. It covers the primary emissions from gasoline and diesel engines like CO, HC, NOx, and PM. It also outlines emission norms for different vehicle types over different periods in countries like India. Furthermore, it analyzes the formation of different emissions like hydrocarbons, carbon monoxide, nitrogen oxides, and particulates in detail. Lastly, it discusses approaches to control emissions like improving combustion, optimizing operating parameters, and using after-treatment devices like catalytic converters.
The document discusses gas turbines, which are internal combustion engines that use air and fuel as working fluids. Gas turbines convert the chemical energy of combustion into kinetic energy and pressure in the form of combustion gases, which is then converted into mechanical energy through expansion, generating power. The key components of a gas turbine discussed include the compressor, combustion chamber, and turbine. Various gas turbine cycles and modifications like intercooling, regeneration, and reheating are also explained.
This document discusses gas turbines, including their basic components and working principle. A gas turbine combusts fuel in the presence of compressed air, converting the thermal energy of the combustion products into mechanical energy. The main components are the compressor, combustion chamber, and turbine. The compressed air is mixed with fuel and burned in the combustion chamber. The hot gases then power the turbine before being exhausted. Gas turbines have applications in vehicles, aircraft, ships, and power generation.
An engine converts energy into mechanical motion or electrical energy. Common types include internal combustion engines that burn fuel to power pistons or turbines, and external combustion engines like steam engines that use an external heat source. Internal combustion engines ignite fuel inside cylinders, using the combustion to directly power engine components. Alternators in vehicles are rotated by engines to generate electrical power. The engine has components like cylinders, pistons, valves, spark plugs, and a crankshaft that work together to intake air and fuel, compress the mixture, ignite it to power the pistons, and expel exhaust gases. Automation reduces human work in production by using control systems and information technologies.
A recuperator is a heat exchanger that recovers waste heat from exhaust gases or air streams and transfers it to incoming gases or air streams. It increases efficiency by preheating the incoming streams using waste heat from the outgoing streams. Recuperators are commonly used in industrial processes and gas turbine engines to reduce fuel consumption and increase overall efficiency. They can reduce energy costs by recovering up to 80% of waste heat and lowering fuel usage by 20-30%.
This document discusses the development of a solar-operated Stirling engine. It begins by introducing Stirling engines and their ability to use solar energy as a heat source. It then describes the four steps of the Stirling cycle: 1) isothermal expansion, 2) steady volume heat removal, 3) isothermal compression, and 4) steady volume heating. Next, it discusses different types of Stirling engines, including alpha, beta, and gamma configurations. It also covers low temperature differential Stirling engines that can operate with smaller temperature differences. The document provides details on the principles and operation of Stirling engines in converting thermal energy from a heat source into mechanical energy.
The turboprop engine has a compressor section that pressurizes air, a combustion chamber where fuel is burned, and a reduction gearbox that reduces the high rpm of the turbine to a lower rpm to turn the propeller more efficiently. The fuel nozzle injects fuel into the combustion chamber where an igniter plug ignites the fuel-air mixture to produce thrust to turn the turbine and propeller.
The document describes the four strokes of a diesel engine: intake, compression, power, and exhaust. In the intake stroke, air enters the cylinder as the piston moves down. In the compression stroke, both valves remain closed and the piston compresses the air. In the power stroke, fuel is injected and ignites when the piston reaches top dead center, pushing the piston back down. Finally, in the exhaust stroke, the exhaust valve opens and waste gases are expelled as the piston moves back up. The document also lists key engine components like the head, camshaft, piston, connecting rod, and crankshaft.
Motor bakar atau mesin pembakaran internal bekerja dengan membakar bahan bakar di dalam ruang bakar untuk menggerakkan piston yang kemudian menggerakkan poros engkol, dengan komponen utama seperti blok silinder, kepala silinder, piston, dan poros engkol. Mesin terdiri atas bagian atas, tengah, dan bawah, serta sistem pendinginan, bahan bakar, pengapian, dan pelumasan.
Gas turbines operate by compressing air, adding fuel and igniting it to generate high-temperature gas, and expanding this gas through a turbine to power the compressor and provide output shaft work. There are various types including turbojets used in aircraft, turboprops which drive propellers via reduction gears, and turbofans which have a large fan at the front and achieve higher efficiency. Ramjets have no moving parts and rely solely on forward speed for compression, making them unable to produce static thrust.
Air refrigeration system used in aircraftNissan Patel
Ìý
There are four main types of aircraft refrigeration systems: simple, bootstrap, regenerative, and reduced ambient. The simple system uses a turbine to drive a fan that pulls cooling air through a heat exchanger for ground cooling. The bootstrap system has two heat exchangers and uses turbine power to drive a compressor for additional cooling capacity at high speeds. The regenerative system also has two heat exchangers and cools air in the second using bleed air from the first for both ground and high-speed aircraft. The reduced ambient system uses two expansion turbines, one for cabin air and one for ram air, connected to a fan to provide cooling below ambient temperatures for supersonic aircraft.
The document describes different types of internal combustion engines. It begins by defining heat engines and classifying them as either external or internal combustion engines. It then focuses on internal combustion engines, describing their basic components and functions. It provides details on the four stroke cycles of petrol and diesel engines. Key differences between petrol and diesel engines are outlined. Finally, it briefly introduces two stroke engines and depicts their operating cycles.
Jet engines produce thrust by channeling the explosion of fuel combustion rearward using a gas turbine. They operate based on Newton's third law, which states that for every action force there is an equal and opposite reaction force. The key parts of a jet engine are the fan, compressor, combustor, turbine, mixer, and nozzle. Air is sucked into the compressor and increases in pressure and temperature before being mixed with fuel and ignited in the combustor. The expanding hot gases power the turbine, which drives the compressor. The gases then exit through the nozzle at high speed, producing thrust that propels the aircraft forward. Jet engines provide advantages of high speed and power-to-weight ratio but have disadvantages of high fuel consumption
Dokumen tersebut membahas tentang motor bakar, meliputi pengertian, pembagian, klasifikasi, cara kerja, dan komponen utama motor bakar. Secara khusus dijelaskan mengenai motor bakar Otto (bensin), diesel, dan Wankel beserta perbandingan prinsip kerjanya.
The document provides an overview of internal combustion engines. It discusses the basic classifications and cycles of internal combustion engines including two-stroke and four-stroke engines. It also covers the workings of spark ignition and compression ignition engines, as well as common engine components and systems such as carburetors and fuel injection systems. Key topics include the Otto, Diesel, and Carnot power cycles; combustion stages; valve timing diagrams; and scavenging, pre-ignition, detonation, lubrication, and emissions control.
Motor bakar mengubah energi kimia bahan bakar menjadi energi panas dan mekanik. Ada dua jenis motor bakar berdasarkan lokasi pembakaran: motor luar dan dalam. Motor dalam langsung mengubah energi panas menjadi mekanik melalui komponen seperti piston, silinder, dan poros engkol.
The document discusses gas turbines, which are internal combustion engines that use air and fuel as working fluids. Gas turbines convert the chemical energy of combustion into kinetic energy and pressure in the form of combustion gases, which is then converted into mechanical energy through expansion, generating power. The key components of a gas turbine discussed include the compressor, combustion chamber, and turbine. Various gas turbine cycles and modifications like intercooling, regeneration, and reheating are also explained.
This document discusses gas turbines, including their basic components and working principle. A gas turbine combusts fuel in the presence of compressed air, converting the thermal energy of the combustion products into mechanical energy. The main components are the compressor, combustion chamber, and turbine. The compressed air is mixed with fuel and burned in the combustion chamber. The hot gases then power the turbine before being exhausted. Gas turbines have applications in vehicles, aircraft, ships, and power generation.
An engine converts energy into mechanical motion or electrical energy. Common types include internal combustion engines that burn fuel to power pistons or turbines, and external combustion engines like steam engines that use an external heat source. Internal combustion engines ignite fuel inside cylinders, using the combustion to directly power engine components. Alternators in vehicles are rotated by engines to generate electrical power. The engine has components like cylinders, pistons, valves, spark plugs, and a crankshaft that work together to intake air and fuel, compress the mixture, ignite it to power the pistons, and expel exhaust gases. Automation reduces human work in production by using control systems and information technologies.
A recuperator is a heat exchanger that recovers waste heat from exhaust gases or air streams and transfers it to incoming gases or air streams. It increases efficiency by preheating the incoming streams using waste heat from the outgoing streams. Recuperators are commonly used in industrial processes and gas turbine engines to reduce fuel consumption and increase overall efficiency. They can reduce energy costs by recovering up to 80% of waste heat and lowering fuel usage by 20-30%.
This document discusses the development of a solar-operated Stirling engine. It begins by introducing Stirling engines and their ability to use solar energy as a heat source. It then describes the four steps of the Stirling cycle: 1) isothermal expansion, 2) steady volume heat removal, 3) isothermal compression, and 4) steady volume heating. Next, it discusses different types of Stirling engines, including alpha, beta, and gamma configurations. It also covers low temperature differential Stirling engines that can operate with smaller temperature differences. The document provides details on the principles and operation of Stirling engines in converting thermal energy from a heat source into mechanical energy.
The turboprop engine has a compressor section that pressurizes air, a combustion chamber where fuel is burned, and a reduction gearbox that reduces the high rpm of the turbine to a lower rpm to turn the propeller more efficiently. The fuel nozzle injects fuel into the combustion chamber where an igniter plug ignites the fuel-air mixture to produce thrust to turn the turbine and propeller.
The document describes the four strokes of a diesel engine: intake, compression, power, and exhaust. In the intake stroke, air enters the cylinder as the piston moves down. In the compression stroke, both valves remain closed and the piston compresses the air. In the power stroke, fuel is injected and ignites when the piston reaches top dead center, pushing the piston back down. Finally, in the exhaust stroke, the exhaust valve opens and waste gases are expelled as the piston moves back up. The document also lists key engine components like the head, camshaft, piston, connecting rod, and crankshaft.
Motor bakar atau mesin pembakaran internal bekerja dengan membakar bahan bakar di dalam ruang bakar untuk menggerakkan piston yang kemudian menggerakkan poros engkol, dengan komponen utama seperti blok silinder, kepala silinder, piston, dan poros engkol. Mesin terdiri atas bagian atas, tengah, dan bawah, serta sistem pendinginan, bahan bakar, pengapian, dan pelumasan.
Gas turbines operate by compressing air, adding fuel and igniting it to generate high-temperature gas, and expanding this gas through a turbine to power the compressor and provide output shaft work. There are various types including turbojets used in aircraft, turboprops which drive propellers via reduction gears, and turbofans which have a large fan at the front and achieve higher efficiency. Ramjets have no moving parts and rely solely on forward speed for compression, making them unable to produce static thrust.
Air refrigeration system used in aircraftNissan Patel
Ìý
There are four main types of aircraft refrigeration systems: simple, bootstrap, regenerative, and reduced ambient. The simple system uses a turbine to drive a fan that pulls cooling air through a heat exchanger for ground cooling. The bootstrap system has two heat exchangers and uses turbine power to drive a compressor for additional cooling capacity at high speeds. The regenerative system also has two heat exchangers and cools air in the second using bleed air from the first for both ground and high-speed aircraft. The reduced ambient system uses two expansion turbines, one for cabin air and one for ram air, connected to a fan to provide cooling below ambient temperatures for supersonic aircraft.
The document describes different types of internal combustion engines. It begins by defining heat engines and classifying them as either external or internal combustion engines. It then focuses on internal combustion engines, describing their basic components and functions. It provides details on the four stroke cycles of petrol and diesel engines. Key differences between petrol and diesel engines are outlined. Finally, it briefly introduces two stroke engines and depicts their operating cycles.
Jet engines produce thrust by channeling the explosion of fuel combustion rearward using a gas turbine. They operate based on Newton's third law, which states that for every action force there is an equal and opposite reaction force. The key parts of a jet engine are the fan, compressor, combustor, turbine, mixer, and nozzle. Air is sucked into the compressor and increases in pressure and temperature before being mixed with fuel and ignited in the combustor. The expanding hot gases power the turbine, which drives the compressor. The gases then exit through the nozzle at high speed, producing thrust that propels the aircraft forward. Jet engines provide advantages of high speed and power-to-weight ratio but have disadvantages of high fuel consumption
Dokumen tersebut membahas tentang motor bakar, meliputi pengertian, pembagian, klasifikasi, cara kerja, dan komponen utama motor bakar. Secara khusus dijelaskan mengenai motor bakar Otto (bensin), diesel, dan Wankel beserta perbandingan prinsip kerjanya.
The document provides an overview of internal combustion engines. It discusses the basic classifications and cycles of internal combustion engines including two-stroke and four-stroke engines. It also covers the workings of spark ignition and compression ignition engines, as well as common engine components and systems such as carburetors and fuel injection systems. Key topics include the Otto, Diesel, and Carnot power cycles; combustion stages; valve timing diagrams; and scavenging, pre-ignition, detonation, lubrication, and emissions control.
Motor bakar mengubah energi kimia bahan bakar menjadi energi panas dan mekanik. Ada dua jenis motor bakar berdasarkan lokasi pembakaran: motor luar dan dalam. Motor dalam langsung mengubah energi panas menjadi mekanik melalui komponen seperti piston, silinder, dan poros engkol.
Motor bakar adalah mesin yang mengubah energi kimia bahan bakar menjadi energi panas dan menggunakannya untuk gerakan mekanik. Terdapat dua jenis motor bakar berdasarkan lokasi pembakaran, yaitu motor bakar luar dan dalam. Motor bakar dalam melakukan pembakaran langsung di dalam mesin sehingga panasnya langsung diubah menjadi tenaga. Komponen utama motor bakar dalam antara lain piston, batang piston, blok silinder
Dokumen tersebut membahas prinsip kerja motor bensin, meliputi konversi energi kimia menjadi energi panas lalu gerak, serta proses pembakaran di dalam silinder. Dibahas pula jenis motor bensin 2 takt dan 4 takt beserta perbandingan karakteristiknya, serta unjuk kerja motor bensin secara umum.
Motor bakar adalah mesin yang mengubah energi kimia menjadi panas melalui pembakaran bahan bakar. Ada tiga syarat utama pembakaran yaitu adanya kalori, udara, dan bahan bakar. Ada dua jenis motor bakar yaitu pembakaran dalam dan luar. Motor 4 tak dan 2 tak berbeda dalam siklus kerjanya dimana motor 4 tak membutuhkan 4 langkah sementara motor 2 tak hanya 2 langkah.
Dokumen tersebut memberikan penjelasan mengenai motor bakar, termasuk pengertian, bagian, klasifikasi, cara kerja, dan komponen utamanya. Secara ringkas, motor bakar adalah mesin yang mengubah energi kimia bahan bakar menjadi energi panas melalui pembakaran, kemudian menggunakan energi panas tersebut untuk menghasilkan kerja mekanik melalui gerakan piston. Ada dua jenis utama motor bakar, yaitu pembakaran
Sepeda motor dapat dibedakan menjadi 2-tak dan 4-tak, di mana 2-tak memiliki siklus kerja 2 langkah (isap dan buang) dalam setiap putaran engkol, sedangkan 4-tak memiliki siklus kerja 4 langkah (isap, kompresi, kerja, buang) dalam 2 putaran engkol. Sepeda motor 2-tak menggunakan saluran untuk memasukkan, membuang, dan membilas bahan bakar yang dikendalikan piston, sedangkan
Dokumen tersebut membahas tentang motor bakar bensin, dimana mahasiswa dapat mempelajari pengertian, jenis, komponen, mekanisme, dan sistem pembakaran motor bensin. Jenis motor bakar yang dijelaskan adalah motor pembakaran dalam seperti motor torak dan wankel, serta perbandingan antara motor 2 tak dan 4 tak.
Motor bensin bekerja dengan cara membakar campuran udara dan bensin di dalam ruang bakar (silinder) untuk mendorong turun naiknya piston. Ada dua jenis motor bensin yaitu 4 tak dan 2 tak. Motor 4 tak terdiri atas 4 langkah yakni isap, kompresi, usaha dan buang, sedangkan motor 2 tak hanya memiliki 3 langkah yaitu kompresi, usaha dan bilas. Kedua jenis motor beroperasi dengan cara yang sama yaitu membakar campuran
Teks tersebut membahas tentang turbin gas dan sistem kerjanya. Secara singkat, turbin gas bekerja dengan cara menghisap udara dan menaikkan tekanannya (kompresi), membakar campuran udara dan bahan bakar, kemudian memanfaatkan gas panas hasil pembakaran untuk memutar turbin dan menghasilkan energi mekanik. Sistem ini terdiri dari kompresor, ruang pembakaran, dan turbin gas.
Motor bensin merupakan mesin konversi energi yang mengubah energi kimia bahan bakar menjadi energi panas, lalu menjadi energi gerak melalui proses pembakaran dalam silinder. Ada dua jenis motor bensin berdasarkan langkah kerjanya, yaitu 2 takt dan 4 takt. Motor 2 takt memiliki proses yang lebih sederhana namun kurang efisien, sementara motor 4 takt lebih efisien meski konstruksinya lebih rumit
Motor bensin menggunakan bahan bakar bensin yang dicampur dengan udara dan dikompresikan di ruang bakar sebelum dibakar. Motor bensin ditemukan oleh Nikolaus Otto pada 1867 dan dikembangkan lebih lanjut oleh Gottlieb Daimler dan Karl Benz pada 1880-an. Ada dua jenis motor bensin, yaitu motor 4 tak dan 2 tak, yang berbeda dalam proses pembakaran dan sistem katupnya.
Mata kuliah matemaika pada Prodi Rekayasa Sipil tingkat lanjut yang membahas mengenai Matriks, Determinan, Invers, Metode Sarrus dan Kofaktor dan Metode Gauss Jordan
Presentasi ini merupakan materi pertemuan pertama untuk mata kuliah Pengukuran dan Instrumentasi. Materi ini mencakup:
✅ Konsep dasar pengukuran dan instrumentasi
✅ Jenis-jenis pengukuran (langsung & tidak langsung)
✅ Sistem satuan internasional (SI) dalam teknik elektro
✅ Kesalahan dalam pengukuran dan cara meminimalkannya
✅ Karakteristik alat ukur (akurasi, presisi, resolusi, sensitivitas)
✅ Contoh alat ukur dalam teknik elektro seperti multimeter, osiloskop, clamp meter, function generator, dan signal analyzer
Presentasi ini dilengkapi dengan ilustrasi dan diagram yang membantu pemahaman konsep secara visual.
Sangat cocok untuk mahasiswa teknik elektro dan telekomunikasi yang ingin memahami dasar-dasar pengukuran dalam bidang ini.
📌 Jangan lupa untuk like, share, dan follow untuk materi lebih lanjut!
#Pengukuran #Instrumentasi #TeknikElektro #Telekomunikasi #Praktikum #PengukurandanInstrumentasi #PBL #PengukuranBesaranListrik
2. MOTOR BAKAR (ENGINE)
Pengertian Motor Bakar
Motor bakar adalah mesin atau pesawat yang
mengubah energi kimia dari bahan bakar
menjadi energi Mekanik pada gerakan naik turun
piston
1. Motor pembakaran luar
Pada motor pembakaran luar ini,
proses pembakaran bahan bakar
terjadi di luar mesin itu, sehingga
untuk melaksanakan pembakaran
digunakan mesin tersendiri. Panas
dari hasil pembakaran bahan bakar
tidak langsung diubah menjadi
tenaga gerak, tetapi terlebih dulu
melalui media penghantar, baru
kemudian diubah menjadi tenaga
mekanik
4. 2. Motor Pembakaran Dalam :
Motor bakar sering juga disebut motor pembakaran dalam
(internal combustion engine), karena proses pembakaran
terjadi di dalam ruang bakar yang ada pada ruang silinder.
Proses pembakaran yang terjadi adalah proses merubah
energi panas yang tersimpan dalam bahan bakar menjadi
energi gerak.
Pada motor bakar untuk merubah energi panas dari
bahan bakar menjadi energi gerak terdapat beberapa
sistim, menurut mekanismenya dibedakan menjadi :
1.motor torak translasi dan
2.Torak rotari (wankel),
5. Motor Bakar ini pertama kali diciptakan oleh seorang insiyur
berkebangsaan Jerman Dr. Felix Wankel pada tahun 1954.
Dikenal juga dengan nama mesin rotari ( rotary engine), yaitu
tipe mesin yang trdiri atas rotor berbentuk segitiga sama sisi
yang berputar dalam stator
Menurut jenis bahan bakarnya dibedakan menjadi:
1 motor bensin dan
Jenis motor bakar ini diciptakan oleh seorang insinyur
berkebangsaan
Jerman, Nicholas Otto
2.motor disel.
Motor diesel ditemukan oleh Rudolf Diesel, pada tahun 1872.
Motor diesel disebut dengan motor penyalaan kompresi
(compression ignition engine) karena penyalaan bahan
bakarnya diakibatkan oleh suhu kompresi udara dalam ruang
bakar.
6. a) Motor Bakar Torak Translasi
Energi gerak didapatkan dari
energi panas hasil pembakaran
bahan bakar melalui piston yang
bergerak translasi yang selanjutnya
dirubah menjadi gerak putar melalui
mekanisme engkol.
Keterangan :
TMA= Titik Mati Atas ( Batas
teratas langkah torak )
TMB = Titik Mati Bawah ( Batas
terbawah langkah torak )
L = Panjang langkah torak dari
TMB ke TMA
r = Radius / Jari-jari engkol
7. Menurut proses kerjanya mesin torak
translasi dibedakan atas 2 macam : yaitu motor
2 tak dan motor 4 tak.
1. Motor 2 Tak
Disebut motor 2 tak atau
motor 2 langkah
karenasetiap proses
pembakaran dibutuhkan 2
langkah torak dari titik
mati bawah ke titik mati
atas dan dari titik mati atas
ke titik mati bawah
8. GERAK TURUN NAIKNYA PISTON
Piston bergerak dari TMB ke TMA
Pada bagian bawah dari piston
Ø Langkah Isap
Pada saat saluran hisap membuka
maka campuran udara dan bensin
akan masuk ke dalam ruang engkol
Pada bagian atas dari piston
Ø Langkah Kompresi
Ruang bilas tertutup oleh piston,
campuran bahan bakar, udara dan
pelumas yang masuk dari ruang
bilas di pampatkan ke ruang bakar
9. Piston bergerak dari TMA ke TMB Pada bagian
dari atas Piston
Ø Langkah Usaha
Sebelum piston mencapai TMA (titik mati atas),
busi akan memercikan bunga api sehingga
campuran udara dan bahan bakar akar terbakar
dan menyebabkan timbulnya daya dorong
terhadap piston, sehingga piston bergerak dari
TMA ke TMB
Ø Langkah Buang
Sesaat setelah saluran hisap tertutup dan saluran
bilas serta saluran buang membuka maka
campuran udara dan bahan bakar yamg berada
diruang engkol akan mendorong gas sisa hasil
pembakaran melalui saluran bilas ke saluran
buang.
11. Sifat dan ciri motor bensin 2 langkah :
Ø Konstruksi lebih sederhana dan biaya pembuatan
lebih murah.
Ø Pembuangan gas kurang sempurna dan kesulitan
untuk mempertinggi kecepatan.
Ø Dengan ukuran langkah torak dan kecepatan yang
sama akan menghasilkan daya yang lebih besar
Ø Suara bising
Ø Bahan bakar boros
Ø Saluran IN dan EX terletak di blok silinder
12. 2. Motor 4 Tak
Motor Bensin 4
Langkah adalah
motor pembakaran
dalam yang dalam
satu siklus
pembakaran
memerlukan
4 kali langkah torak
atau
2 kali putaran poros
engkol
13. CARA KERJA MOTOR 4 TAK
Langkah Hisap
Ø Katup hisap terbuka dan katup
buang tertutup
Ø Piston bergerak dari TMA ke TMB
dan menghhisap campuran bahan
bakar dan udara masuk kedalam
ruang bakar
Temperatur » 20°C Vakum 0,1 ÷ 0,6
bar Katup Isap terbuka
Katup Buang tertutup
14. Langkah kompresi
Ø Katup hisap dan katup
buang keduanya tertutup
Ø Piston bergerak dari TMB ke TMA
dan menekan campuran bahan
bakar dan udara didalam ruang
bakar
Tekanan akhir kompresi =
Otto = 1 ÷ 1,5 Mpa ( 10 ÷ 15 bar ) Diesel =
1,5 ÷ 4 Mpa ( 15 + 40 bar ) Temperatur
akhir kompresi
Otto = 300 ÷ 6000C Diesel = 700 ÷ 9000C
Katup hisap tertutup
Katup buang tertutup
15. Langkah usaha
Ø Kedua katup masih tertutup. Campuran
bahan bakar dan udara yang bertekanan
tinggi dinyalakan oleh api busi
Ø Piston bergerak cepat dari TMA ke TMB
akibat dorongan hasil pembakaran
Temperatur max pembakaran : Otto = 2000 ÷
25000C
Diesel = 2000 ÷ 25000C Tekanan max
pembakaran : Otto= 3 ÷ 6 Mpa ( 30 ÷ 6 bar )
Diesel = 4 ÷ 12 Mpa (40 ÷ 120 bar )
Katup isap tertutup
Katup buang tertutup
16. Langkah buang
Ø Katup hisap tertutup dan katup
buang terbuka
Ø Piston bergerak dari TMB ke
TMA dan mendorong gas sisa
pembakaran keluar dari ruang
bakar
Temperatur gas buang ( beban penuh) :
Otto = 600 ÷ 10000C Diesel =
500 ÷ 6000C
Katup isap tertutup
Katup buang terbuka
17. Sifat-sifat motor bensin 4 langkah :
Ø Dalam 4 langkah torak terdapat 1 langkah ekspansi.
Ø Pemakaian bahan bakar lebih hemat dan kerugian
dari gas-gas yang terbuang kecil sekali.
Ø Konstruksinya lebih rumit dan biaya pembuatan
lebih mahal.
Ø Dengan ukuran piston dan putaran yang sama
menghasilkan daya yang lebih kecil.
Ø Pembuangan gas lebih sempurna.