This document provides an overview of POMDP (Partially Observable Markov Decision Process) and its applications. It first defines the key concepts of POMDP such as states, actions, observations, and belief states. It then uses the classic Tiger problem as an example to illustrate these concepts. The document discusses different approaches to solve POMDP problems, including model-based methods that learn the environment model from data and model-free reinforcement learning methods. Finally, it provides examples of applying POMDP to games like ViZDoom and robot navigation problems.
This document provides an overview of POMDP (Partially Observable Markov Decision Process) and its applications. It first defines the key concepts of POMDP such as states, actions, observations, and belief states. It then uses the classic Tiger problem as an example to illustrate these concepts. The document discusses different approaches to solve POMDP problems, including model-based methods that learn the environment model from data and model-free reinforcement learning methods. Finally, it provides examples of applying POMDP to games like ViZDoom and robot navigation problems.
Unsupervised Collaborative Learning of Keyframe Detection and Visual Odometry...Masaya Kaneko
?
SfMLearner + KF selectionを提案した"Unsupervised Collaborative Learning of Keyframe Detection and Visual Odometry Towards Monocular Deep SLAM [ICCV19]"を論文読み会で紹介した時の資料です.
11. 10
1. Camera Calibration
? Directな手法ではこの部分がかなり大事
– Indirectな手法では特徴抽出器?記述子は測光の変動に頑強性を
持つのでこの操作の大部分は無視することができる
– Geometric CalibrationとPhotometric Calibrationの2種類で
モデル化する
? Geometric Calibration
– よく知られたピンホールカメラモデル
– 3D点 ?, ?, ? ∈ ?3
から画像点 ? ?, ? ? ∈ Ωへ
(投影関数であり, Π ? ∶ ?3 → Ω と表記)
(1)[1]
[1] J. Engel, V. Usenko, D. Cremers. A Photometrically Calibrated Benchmark For Monocular Visual Odometry, In arXiv:1607.02555, 2016.
12. 11
1. Camera Calibration
– 今回は歪みあり画像点 ? ?, ? ? から歪みなし画像点 ? ?, ? ? へ変換
– この点を三次元へ変換する際には以下の変換を行う
(逆投影関数であり, Π ?
?1 ∶ ? × Ω → ?3 と表記)
– 今回のcalibrationはPTAM[2]の実装を使い,チェックボードを用
いることで [??, ??, ? ?, ? ?, ?]を推定
[1] J. Engel, V. Usenko, D. Cremers. A Photometrically Calibrated Benchmark For Monocular Visual Odometry, In arXiv:1607.02555, 2016.
[2] G. Klein and D. Murray. Parallel tracking and mapping for small AR workspaces. In International Symposium on Mixed and Augmented Reality (ISMAR), 2007.
(2,3) [1]
20. 19
3. Windowベースの最適化
? Jacob行列? ?の定義
– Gauss-Newton法において?を動かす方向(勾配を降りる)となる
– Jacob行列は?geo = ??, ??, ?, ? , ?photo = (??, ??, ??, ??)で分割
– これにより以下2つの近似を行うことができる
? First Estimate Jacobians [4]による安定性の確保?
– ?geo, ?photoは?に対してsmoothな空間になっている
? ?geoは??全体で等しくなるので中央画素だけ計算する(削減)
(12)
(13)
[4] G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis. A first-estimates Jacobian EKF for improving SLAM consistency. In International Symposium on Experimental Robotics, 2008.
6
58. 57
参考文献
? J. Engel, V. Koltun, D. Cremers. Direct sparse odometry. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2017.
- 本論文
? J. Engel, V. Usenko, D. Cremers. A Photometrically Calibrated Benchmark For
Monocular Visual Odometry, In arXiv:1607.02555, 2016.
- Photometric Calibrationの詳細(本スライド引用[1])
? E. Ethan. Gauss-Newton / Levenberg-Marquardt optimization. 2013.
- Gauss-Newton法の説明資料(本スライド引用[5])
? B. Jose-Luis. A tutorial on se (3) transformation parameterizations and on-m
anifold optimization. University of Malaga, 2010.
- CVにおけるLie代数の説明資料(本スライド引用[3])
? 岡谷貴之, et al. バンドルアジャストメント. 研究報告コンピュータビジョンとイ
メージメディア (CVIM), 2009, 2009.37: 1-16.
- BAの最適化に関する入門資料(本スライド引用[6])
? B. Simon, I. MATTHEWS. Lucas-Kanade 20 Years On: A Unifying Framewor
k. International journal of computer vision, 2004, 56.3: 221-255.
- DirectなSLAMの最適化に使われるLucas-Kanade法の説明資料(Gauss-Ne
wton法, Levenberg-Marquardt法の部分が参考になった)