狠狠撸

狠狠撸Share a Scribd company logo
1
DEEP LEARNING JP
[DL Papers]
http://deeplearning.jp/
Differentiable Mapping Networks: Learning
Structured Map Representations for Sparse
Visual Localization Jumpei Arima
書誌情報
? タイトル:
Differentiable Mapping Networks:
Learning Structured Map Representations for Sparse Visual Localization
? 著者: Peter Karkus, Anelia Angelova, Vincent Vanhoucke, Rico Jonschkowski
– first authorはNational University of Singapore
– Robotics at Googleでのインターン中の成果
? 会議:ICRA2020
? project page: https://sites.google.com/view/differentiable-mapping
? arxiv: https://arxiv.org/abs/2005.09530
2
背景
? Robot 学習の課題
– 実データのコストが高い、reality gap、Long horizon task、…
? Visual Navigation
– DD-PPO: LEARNING NEAR-PERFECT POINTGOAL NAVIGATORS FROM 2.5 BILLION FRAMES[ICLR2020]
? simでのvisual navigation方策獲得に2.5 billion steps(180 days of GPU-time)
3
?データ効率を上げる
?従来のRoboticsの技術の活用
?Robotics特有の事前知識の導入
背景
? Differentiable Algorithm Networks for Composable Robot Learning[RSS2019]
– データ駆動とモデル駆動の利点を融合した手法
? Learning Explore Using Active Neural SLAM[CVPR2020]
– habitat challenge2019優勝チームの手法
– Mapping, Localization, Planningを別々に学習(一部解析的手法含む)
– 階層的なシステムで、サンプル効率?性能ともに向上
4
背景
? 微分可能なRobotics研究
5
問題設定
<Sparse visual mapping and localization>
→street viewから得られるな情報(数視点からの画像)からMappingし
与えられた画像から位置を推定する
<課題>
? 疎な情報だけからマッピングをする
? 視点が大きく変わったところから
推定する必要がある
<応用先>
? 自動運転(都市環境での自己位置推定)
? multi-robot mapping
? 外観の変化が多い倉庫 etc.
6
背景
<良い地図表現とは>
? 地図は環境の変化と下位タスク(自己位置推定など)のために
柔軟に対応する必要がある
? 少ないデータから空間構造を構築する必要がある
<従来のマッピング> <DNNを用いた手法>
?空間構造 ?柔軟に対応可能
?変化に対応しづらい ?タスクに特化したマップ生成可能
?タスクごとに変更できない ?空間構造が欠ける 7
Proposed Method
? DNNによる柔軟な環境表現と幾何情報による空間把握を
組み合わせた方法を提案
→全体が微分可能なモデルなので、タスクに特化したマップ表現が可能
8
Proposed Method
<Mapping>
数視点からの画像から潜在Mapを生成
<Egocentric Spatial Attention>
query視点から潜在Mapを解釈
するための注意機構
(query視点に潜在Mapを座標変換)
<Particle Filter Localization>
微分可能なPFで自己位置推定
9
Proposed Method
<Mapping>
? Context画像を
画像埋め込み表現: ? ?
視点座標:
? ?
= (?, ?, ????, ????)
で表現された潜在マップ m を生成
? Feature Extractorは4層のCNN
– Context画像間で重みは共有
10
? = < ? ?, ? ? > ? = 1: ??
Proposed Method
<Egocentric Spatial Attention>
? query基準の空間構造に対しての注意機構
? query keyとview keysのスカラ積を重みとした
Context画像埋め込み表現を重み付け和を算出
? 地図の空間構造を活用し、特徴量抽出の難易度を大幅に減少する
11
Proposed Method
<Particle Filter Localization>
? Differentiable PFを用いて潜在マップとquery画像から自己位置推定を行う
? ?? ? ≈< ??
?
, log ? ?
?
> ? = 1: ?
– ??
?
: ロボットの候補位置(query画像の視点)←初期分布?0
– log ? ?
?
: particleの対数尤度
12
Observation Model
log ? ?
?
=
log ? ? + log ? ??1
?
+ ?
m:View embedding map
Transition Model
??
?
= ??(???1
?
?, ? ?)
?? =
?
? ?
?
??
?
Proposed Method
<Observation Model>
? particleの位置??
?
と潜在マップ? を与えられたとき
画像?? を観測する条件付き対数確率
? ?(??, ??
?
, ?) ≈ log ?(??|??
?
, ?) を推定
? Networkはparticleの対数尤度? ?
?
= log ?(??|??
?
, ?)を直接出力する
log ? ?
?
= log ? ?(??, ??
?
, ?) + log ? ??1
?
+ ?
– 正規化されてないので
? = ? log ?=1
?
?log ? ?
?
で正規化する
? particle間で学習パラメータは共有
13
Proposed Method
<End-to-End training>
? DMNは全体が微分可能であるので、localizationのタスクに対してマッピン
グを最適化するように学習が可能。
? 損失関数はMSE (αはハイパラ(0.5))
? = ? ? ?? 2 = ? ? ?? 2 + (? ? ??)2+ ?(? ? ??)2
コンテキストの数とパーティクルの数は重みを共有しているので
変えることが可能
14
Experiments
<dataset>
? sim: GQN dataset(データ量はGQNの1%)
– Rooms(100k env * 10img), Mazes(960 env * 300 img)
? real: Street View dataset
– 40*40mの範囲からランダムに10画像をsample(train:3838746test: 16359)
<評価>
? Global LocalizationとTrackingにおける自己位置推定精度
– (x,yのRMSEが8.94m以下(範囲の約15%)のときglobal localizationが成功とする)
15
Experiments
<比較手法>
? Mapping
– Latent image map
? 空間構造を明に表現しないnetwork
– Latent vector map
? Latent image mapのmap部分をvectorで表現
? Localization
– Regression
? 回帰によってposeを直接推定(DMNのparticleが一つと同じ)
– Closet context
? query poseに最も近いcontextのpose(画像の類似度による手法の上限としての指標)
– Uninformed estimate
? 初期分布から狀態遷移のみを考慮した場合(タスクの難しさを示す)
16
Experiments
<simでのGlobal Localization>
? 複雑な環境になると(Rooms →Mazes)
RegressionよりPFが優れていることがわかる
17
Experiments
<realでのGlobal Localization>
? 提案手法であるView-embed(提案手法)とPF(提案手法)の双方が
real dataの複雑で広範囲のlocalizationには効果的であることがわかる
18
Experiments
<5stepのtracking後の自己位置推定精度>
? Street Viewで最も提案手法の有用性が示せてる
? PFが複雑な環境で効果的
19
Experiments
<データ効率(Fig. 7)>
比較手法に比べてtrainingデータ量が少ない時に性能が高い
<Contextの数(Fig. 8,9)>
Contextの数の上昇によっての成功率の増加率は提案手法が高い
20
Experiments
<長距離tracking精度 (Fig. 10) >
PFが長距離を考えるには適している
<particleの数 (Fig. 11) >
増やした方が良い結果(計算コストとトレードオフ)
21
Conclusion
? Sparseな画像のみが与えられるLocalizationに最適化された
微分可能な地図生成ネットワーク(DMN)を提案
? Egocentric Spatial Attentionで空間的に構造化された潜在マップを
用いることで、広範囲な複雑な環境において、
学習データが少なくても適用できることを示した
<Future Work>
? 世界中どこでもVisual Localizationを可能にする
? 微分可能なVisual SLAMへの応用
22

More Related Content

What's hot (20)

Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model (MuZero)
Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model (MuZero)Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model (MuZero)
Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model (MuZero)
harmonylab
?
[DL輪読会]YOLOv4: Optimal Speed and Accuracy of Object Detection
[DL輪読会]YOLOv4: Optimal Speed and Accuracy of Object Detection[DL輪読会]YOLOv4: Optimal Speed and Accuracy of Object Detection
[DL輪読会]YOLOv4: Optimal Speed and Accuracy of Object Detection
Deep Learning JP
?
ArtTrack: Articulated Multi-Person Tracking in the Wild : CV勉強会関東
ArtTrack: Articulated Multi-Person Tracking in the Wild : CV勉強会関東ArtTrack: Articulated Multi-Person Tracking in the Wild : CV勉強会関東
ArtTrack: Articulated Multi-Person Tracking in the Wild : CV勉強会関東
Yukiyoshi Sasao
?
【CVPR 2019】Second-order Attention Network for Single Image Super-Resolution
【CVPR 2019】Second-order Attention Network for Single Image Super-Resolution【CVPR 2019】Second-order Attention Network for Single Image Super-Resolution
【CVPR 2019】Second-order Attention Network for Single Image Super-Resolution
cvpaper. challenge
?
【CVPR 2019】Learning spatio temporal representation with local and global diff...
【CVPR 2019】Learning spatio temporal representation with local and global diff...【CVPR 2019】Learning spatio temporal representation with local and global diff...
【CVPR 2019】Learning spatio temporal representation with local and global diff...
cvpaper. challenge
?
Robust Vehicle Localization in Urban Environments Using Probabilistic Maps
Robust Vehicle Localization in Urban Environments Using Probabilistic MapsRobust Vehicle Localization in Urban Environments Using Probabilistic Maps
Robust Vehicle Localization in Urban Environments Using Probabilistic Maps
Kitsukawa Yuki
?
[DL輪読会] Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
[DL輪読会] Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields [DL輪読会] Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
[DL輪読会] Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
Deep Learning JP
?
笔颁础の最终形态骋笔尝痴惭の解説
笔颁础の最终形态骋笔尝痴惭の解説笔颁础の最终形态骋笔尝痴惭の解説
笔颁础の最终形态骋笔尝痴惭の解説
弘毅 露崎
?
FPGAX2016 ドキュンなFPGA
FPGAX2016 ドキュンなFPGAFPGAX2016 ドキュンなFPGA
FPGAX2016 ドキュンなFPGA
Hiroki Nakahara
?
[DL輪読会]Graph R-CNN for Scene Graph Generation
[DL輪読会]Graph R-CNN for Scene Graph Generation[DL輪読会]Graph R-CNN for Scene Graph Generation
[DL輪読会]Graph R-CNN for Scene Graph Generation
Deep Learning JP
?
三次元点群処理ライブラリPCLと 統合ロボットシステム研究での 利用例の紹介
三次元点群処理ライブラリPCLと 統合ロボットシステム研究での 利用例の紹介三次元点群処理ライブラリPCLと 統合ロボットシステム研究での 利用例の紹介
三次元点群処理ライブラリPCLと 統合ロボットシステム研究での 利用例の紹介
Ryohei Ueda
?
Scan Registration for Autonomous Mining Vehicles Using 3D-NDT
Scan Registration for Autonomous Mining Vehicles Using 3D-NDTScan Registration for Autonomous Mining Vehicles Using 3D-NDT
Scan Registration for Autonomous Mining Vehicles Using 3D-NDT
Kitsukawa Yuki
?
semantic segmentation サーベイ
semantic segmentation サーベイsemantic segmentation サーベイ
semantic segmentation サーベイ
yohei okawa
?
颁狈狈の构造最适化手法(第3回3顿勉强会)
颁狈狈の构造最适化手法(第3回3顿勉强会)颁狈狈の构造最适化手法(第3回3顿勉强会)
颁狈狈の构造最适化手法(第3回3顿勉强会)
MasanoriSuganuma
?
2015年9月18日 (GTC Japan 2015) 深層学習フレームワークChainerの導入と化合物活性予測への応用
2015年9月18日 (GTC Japan 2015) 深層学習フレームワークChainerの導入と化合物活性予測への応用 2015年9月18日 (GTC Japan 2015) 深層学習フレームワークChainerの導入と化合物活性予測への応用
2015年9月18日 (GTC Japan 2015) 深層学習フレームワークChainerの導入と化合物活性予測への応用
Kenta Oono
?
(公开版)贵笔骋础エクストリームコンピューティング2017
(公开版)贵笔骋础エクストリームコンピューティング2017 (公开版)贵笔骋础エクストリームコンピューティング2017
(公开版)贵笔骋础エクストリームコンピューティング2017
Hiroki Nakahara
?
Taking a Deeper Look at the Inverse Compositional Algorithm
Taking a Deeper Look at the Inverse Compositional AlgorithmTaking a Deeper Look at the Inverse Compositional Algorithm
Taking a Deeper Look at the Inverse Compositional Algorithm
Mai Nishimura
?
You Only Look One-level Featureの解説と見せかけた物体検出のよもやま話
You Only Look One-level Featureの解説と見せかけた物体検出のよもやま話You Only Look One-level Featureの解説と見せかけた物体検出のよもやま話
You Only Look One-level Featureの解説と見せかけた物体検出のよもやま話
Yusuke Uchida
?
Deep learning入門
Deep learning入門Deep learning入門
Deep learning入門
magoroku Yamamoto
?
Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model (MuZero)
Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model (MuZero)Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model (MuZero)
Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model (MuZero)
harmonylab
?
[DL輪読会]YOLOv4: Optimal Speed and Accuracy of Object Detection
[DL輪読会]YOLOv4: Optimal Speed and Accuracy of Object Detection[DL輪読会]YOLOv4: Optimal Speed and Accuracy of Object Detection
[DL輪読会]YOLOv4: Optimal Speed and Accuracy of Object Detection
Deep Learning JP
?
ArtTrack: Articulated Multi-Person Tracking in the Wild : CV勉強会関東
ArtTrack: Articulated Multi-Person Tracking in the Wild : CV勉強会関東ArtTrack: Articulated Multi-Person Tracking in the Wild : CV勉強会関東
ArtTrack: Articulated Multi-Person Tracking in the Wild : CV勉強会関東
Yukiyoshi Sasao
?
【CVPR 2019】Second-order Attention Network for Single Image Super-Resolution
【CVPR 2019】Second-order Attention Network for Single Image Super-Resolution【CVPR 2019】Second-order Attention Network for Single Image Super-Resolution
【CVPR 2019】Second-order Attention Network for Single Image Super-Resolution
cvpaper. challenge
?
【CVPR 2019】Learning spatio temporal representation with local and global diff...
【CVPR 2019】Learning spatio temporal representation with local and global diff...【CVPR 2019】Learning spatio temporal representation with local and global diff...
【CVPR 2019】Learning spatio temporal representation with local and global diff...
cvpaper. challenge
?
Robust Vehicle Localization in Urban Environments Using Probabilistic Maps
Robust Vehicle Localization in Urban Environments Using Probabilistic MapsRobust Vehicle Localization in Urban Environments Using Probabilistic Maps
Robust Vehicle Localization in Urban Environments Using Probabilistic Maps
Kitsukawa Yuki
?
[DL輪読会] Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
[DL輪読会] Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields [DL輪読会] Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
[DL輪読会] Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
Deep Learning JP
?
笔颁础の最终形态骋笔尝痴惭の解説
笔颁础の最终形态骋笔尝痴惭の解説笔颁础の最终形态骋笔尝痴惭の解説
笔颁础の最终形态骋笔尝痴惭の解説
弘毅 露崎
?
FPGAX2016 ドキュンなFPGA
FPGAX2016 ドキュンなFPGAFPGAX2016 ドキュンなFPGA
FPGAX2016 ドキュンなFPGA
Hiroki Nakahara
?
[DL輪読会]Graph R-CNN for Scene Graph Generation
[DL輪読会]Graph R-CNN for Scene Graph Generation[DL輪読会]Graph R-CNN for Scene Graph Generation
[DL輪読会]Graph R-CNN for Scene Graph Generation
Deep Learning JP
?
三次元点群処理ライブラリPCLと 統合ロボットシステム研究での 利用例の紹介
三次元点群処理ライブラリPCLと 統合ロボットシステム研究での 利用例の紹介三次元点群処理ライブラリPCLと 統合ロボットシステム研究での 利用例の紹介
三次元点群処理ライブラリPCLと 統合ロボットシステム研究での 利用例の紹介
Ryohei Ueda
?
Scan Registration for Autonomous Mining Vehicles Using 3D-NDT
Scan Registration for Autonomous Mining Vehicles Using 3D-NDTScan Registration for Autonomous Mining Vehicles Using 3D-NDT
Scan Registration for Autonomous Mining Vehicles Using 3D-NDT
Kitsukawa Yuki
?
semantic segmentation サーベイ
semantic segmentation サーベイsemantic segmentation サーベイ
semantic segmentation サーベイ
yohei okawa
?
颁狈狈の构造最适化手法(第3回3顿勉强会)
颁狈狈の构造最适化手法(第3回3顿勉强会)颁狈狈の构造最适化手法(第3回3顿勉强会)
颁狈狈の构造最适化手法(第3回3顿勉强会)
MasanoriSuganuma
?
2015年9月18日 (GTC Japan 2015) 深層学習フレームワークChainerの導入と化合物活性予測への応用
2015年9月18日 (GTC Japan 2015) 深層学習フレームワークChainerの導入と化合物活性予測への応用 2015年9月18日 (GTC Japan 2015) 深層学習フレームワークChainerの導入と化合物活性予測への応用
2015年9月18日 (GTC Japan 2015) 深層学習フレームワークChainerの導入と化合物活性予測への応用
Kenta Oono
?
(公开版)贵笔骋础エクストリームコンピューティング2017
(公开版)贵笔骋础エクストリームコンピューティング2017 (公开版)贵笔骋础エクストリームコンピューティング2017
(公开版)贵笔骋础エクストリームコンピューティング2017
Hiroki Nakahara
?
Taking a Deeper Look at the Inverse Compositional Algorithm
Taking a Deeper Look at the Inverse Compositional AlgorithmTaking a Deeper Look at the Inverse Compositional Algorithm
Taking a Deeper Look at the Inverse Compositional Algorithm
Mai Nishimura
?
You Only Look One-level Featureの解説と見せかけた物体検出のよもやま話
You Only Look One-level Featureの解説と見せかけた物体検出のよもやま話You Only Look One-level Featureの解説と見せかけた物体検出のよもやま話
You Only Look One-level Featureの解説と見せかけた物体検出のよもやま話
Yusuke Uchida
?

Similar to [DL輪読会]Differentiable Mapping Networks: Learning Structured Map Representations for Sparse Visual Localization (20)

[DL輪読会]STORM: An Integrated Framework for Fast Joint-Space Model-Predictive C...
[DL輪読会]STORM: An Integrated Framework for Fast Joint-Space Model-Predictive C...[DL輪読会]STORM: An Integrated Framework for Fast Joint-Space Model-Predictive C...
[DL輪読会]STORM: An Integrated Framework for Fast Joint-Space Model-Predictive C...
Deep Learning JP
?
これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...
これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...
これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...
cvpaper. challenge
?
Deep learning実装の基礎と実践
Deep learning実装の基礎と実践Deep learning実装の基礎と実践
Deep learning実装の基礎と実践
Seiya Tokui
?
摆顿尝轮読会闭骋蚕狈と関连研究,世界モデルとの関係について
摆顿尝轮読会闭骋蚕狈と関连研究,世界モデルとの関係について摆顿尝轮読会闭骋蚕狈と関连研究,世界モデルとの関係について
摆顿尝轮読会闭骋蚕狈と関连研究,世界モデルとの関係について
Deep Learning JP
?
[DL輪読会]Learning to Navigate in Cities Without a Map
[DL輪読会]Learning to Navigate in Cities Without a Map[DL輪読会]Learning to Navigate in Cities Without a Map
[DL輪読会]Learning to Navigate in Cities Without a Map
Deep Learning JP
?
2012-03-08 MSS研究会
2012-03-08 MSS研究会2012-03-08 MSS研究会
2012-03-08 MSS研究会
Kimikazu Kato
?
[DL輪読会]Peeking into the Future: Predicting Future Person Activities and Locat...
[DL輪読会]Peeking into the Future: Predicting Future Person Activities and Locat...[DL輪読会]Peeking into the Future: Predicting Future Person Activities and Locat...
[DL輪読会]Peeking into the Future: Predicting Future Person Activities and Locat...
Deep Learning JP
?
[DL輪読会]EfficientDet: Scalable and Efficient Object Detection
[DL輪読会]EfficientDet: Scalable and Efficient Object Detection[DL輪読会]EfficientDet: Scalable and Efficient Object Detection
[DL輪読会]EfficientDet: Scalable and Efficient Object Detection
Deep Learning JP
?
ae-10. 中間まとめ(ディープラーニング)
ae-10. 中間まとめ(ディープラーニング)ae-10. 中間まとめ(ディープラーニング)
ae-10. 中間まとめ(ディープラーニング)
kunihikokaneko1
?
【CVPR 2019】Do Better ImageNet Models Transfer Better?
【CVPR 2019】Do Better ImageNet Models Transfer Better?【CVPR 2019】Do Better ImageNet Models Transfer Better?
【CVPR 2019】Do Better ImageNet Models Transfer Better?
cvpaper. challenge
?
Top-K Off-Policy Correction for a REINFORCE Recommender System
Top-K Off-Policy Correction for a REINFORCE Recommender SystemTop-K Off-Policy Correction for a REINFORCE Recommender System
Top-K Off-Policy Correction for a REINFORCE Recommender System
harmonylab
?
Rainbow
RainbowRainbow
Rainbow
Takahiro Yoshinaga
?
PyTorch, PixyzによるGenerative Query Networkの実装
PyTorch, PixyzによるGenerative Query Networkの実装PyTorch, PixyzによるGenerative Query Networkの実装
PyTorch, PixyzによるGenerative Query Networkの実装
Shohei Taniguchi
?
Paper Introduction "RankCompete: Simultaneous ranking and clustering of info...
Paper Introduction "RankCompete:Simultaneous ranking and clustering of info...Paper Introduction "RankCompete:Simultaneous ranking and clustering of info...
Paper Introduction "RankCompete: Simultaneous ranking and clustering of info...
Kotaro Yamazaki
?
論文紹介「PointNetLK: Robust & Efficient Point Cloud Registration Using PointNet」
論文紹介「PointNetLK: Robust & Efficient Point Cloud Registration Using PointNet」論文紹介「PointNetLK: Robust & Efficient Point Cloud Registration Using PointNet」
論文紹介「PointNetLK: Robust & Efficient Point Cloud Registration Using PointNet」
Naoya Chiba
?
ICCV2019 report
ICCV2019 reportICCV2019 report
ICCV2019 report
Tatsuya Shirakawa
?
(文献绍介)深层学习による动被写体ロバストなカメラの动き推定
(文献绍介)深层学习による动被写体ロバストなカメラの动き推定(文献绍介)深层学习による动被写体ロバストなカメラの动き推定
(文献绍介)深层学习による动被写体ロバストなカメラの动き推定
Morpho, Inc.
?
【チュートリアル】コンピュータビジョンによる動画認識 v2
【チュートリアル】コンピュータビジョンによる動画認識 v2【チュートリアル】コンピュータビジョンによる動画認識 v2
【チュートリアル】コンピュータビジョンによる動画認識 v2
Hirokatsu Kataoka
?
Globally and Locally Consistent Image Completion
Globally and Locally Consistent Image CompletionGlobally and Locally Consistent Image Completion
Globally and Locally Consistent Image Completion
harmonylab
?
Dimensionality reduction with t-SNE(Rtsne) and UMAP(uwot) using R packages.
Dimensionality reduction with t-SNE(Rtsne) and UMAP(uwot) using R packages. Dimensionality reduction with t-SNE(Rtsne) and UMAP(uwot) using R packages.
Dimensionality reduction with t-SNE(Rtsne) and UMAP(uwot) using R packages.
Satoshi Kato
?
[DL輪読会]STORM: An Integrated Framework for Fast Joint-Space Model-Predictive C...
[DL輪読会]STORM: An Integrated Framework for Fast Joint-Space Model-Predictive C...[DL輪読会]STORM: An Integrated Framework for Fast Joint-Space Model-Predictive C...
[DL輪読会]STORM: An Integrated Framework for Fast Joint-Space Model-Predictive C...
Deep Learning JP
?
これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...
これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...
これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...
cvpaper. challenge
?
Deep learning実装の基礎と実践
Deep learning実装の基礎と実践Deep learning実装の基礎と実践
Deep learning実装の基礎と実践
Seiya Tokui
?
摆顿尝轮読会闭骋蚕狈と関连研究,世界モデルとの関係について
摆顿尝轮読会闭骋蚕狈と関连研究,世界モデルとの関係について摆顿尝轮読会闭骋蚕狈と関连研究,世界モデルとの関係について
摆顿尝轮読会闭骋蚕狈と関连研究,世界モデルとの関係について
Deep Learning JP
?
[DL輪読会]Learning to Navigate in Cities Without a Map
[DL輪読会]Learning to Navigate in Cities Without a Map[DL輪読会]Learning to Navigate in Cities Without a Map
[DL輪読会]Learning to Navigate in Cities Without a Map
Deep Learning JP
?
2012-03-08 MSS研究会
2012-03-08 MSS研究会2012-03-08 MSS研究会
2012-03-08 MSS研究会
Kimikazu Kato
?
[DL輪読会]Peeking into the Future: Predicting Future Person Activities and Locat...
[DL輪読会]Peeking into the Future: Predicting Future Person Activities and Locat...[DL輪読会]Peeking into the Future: Predicting Future Person Activities and Locat...
[DL輪読会]Peeking into the Future: Predicting Future Person Activities and Locat...
Deep Learning JP
?
[DL輪読会]EfficientDet: Scalable and Efficient Object Detection
[DL輪読会]EfficientDet: Scalable and Efficient Object Detection[DL輪読会]EfficientDet: Scalable and Efficient Object Detection
[DL輪読会]EfficientDet: Scalable and Efficient Object Detection
Deep Learning JP
?
ae-10. 中間まとめ(ディープラーニング)
ae-10. 中間まとめ(ディープラーニング)ae-10. 中間まとめ(ディープラーニング)
ae-10. 中間まとめ(ディープラーニング)
kunihikokaneko1
?
【CVPR 2019】Do Better ImageNet Models Transfer Better?
【CVPR 2019】Do Better ImageNet Models Transfer Better?【CVPR 2019】Do Better ImageNet Models Transfer Better?
【CVPR 2019】Do Better ImageNet Models Transfer Better?
cvpaper. challenge
?
Top-K Off-Policy Correction for a REINFORCE Recommender System
Top-K Off-Policy Correction for a REINFORCE Recommender SystemTop-K Off-Policy Correction for a REINFORCE Recommender System
Top-K Off-Policy Correction for a REINFORCE Recommender System
harmonylab
?
PyTorch, PixyzによるGenerative Query Networkの実装
PyTorch, PixyzによるGenerative Query Networkの実装PyTorch, PixyzによるGenerative Query Networkの実装
PyTorch, PixyzによるGenerative Query Networkの実装
Shohei Taniguchi
?
Paper Introduction "RankCompete: Simultaneous ranking and clustering of info...
Paper Introduction "RankCompete:Simultaneous ranking and clustering of info...Paper Introduction "RankCompete:Simultaneous ranking and clustering of info...
Paper Introduction "RankCompete: Simultaneous ranking and clustering of info...
Kotaro Yamazaki
?
論文紹介「PointNetLK: Robust & Efficient Point Cloud Registration Using PointNet」
論文紹介「PointNetLK: Robust & Efficient Point Cloud Registration Using PointNet」論文紹介「PointNetLK: Robust & Efficient Point Cloud Registration Using PointNet」
論文紹介「PointNetLK: Robust & Efficient Point Cloud Registration Using PointNet」
Naoya Chiba
?
(文献绍介)深层学习による动被写体ロバストなカメラの动き推定
(文献绍介)深层学习による动被写体ロバストなカメラの动き推定(文献绍介)深层学习による动被写体ロバストなカメラの动き推定
(文献绍介)深层学习による动被写体ロバストなカメラの动き推定
Morpho, Inc.
?
【チュートリアル】コンピュータビジョンによる動画認識 v2
【チュートリアル】コンピュータビジョンによる動画認識 v2【チュートリアル】コンピュータビジョンによる動画認識 v2
【チュートリアル】コンピュータビジョンによる動画認識 v2
Hirokatsu Kataoka
?
Globally and Locally Consistent Image Completion
Globally and Locally Consistent Image CompletionGlobally and Locally Consistent Image Completion
Globally and Locally Consistent Image Completion
harmonylab
?
Dimensionality reduction with t-SNE(Rtsne) and UMAP(uwot) using R packages.
Dimensionality reduction with t-SNE(Rtsne) and UMAP(uwot) using R packages. Dimensionality reduction with t-SNE(Rtsne) and UMAP(uwot) using R packages.
Dimensionality reduction with t-SNE(Rtsne) and UMAP(uwot) using R packages.
Satoshi Kato
?

More from Deep Learning JP (20)

【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
Deep Learning JP
?
【顿尝轮読会】事前学习用データセットについて
【顿尝轮読会】事前学习用データセットについて【顿尝轮読会】事前学习用データセットについて
【顿尝轮読会】事前学习用データセットについて
Deep Learning JP
?
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
Deep Learning JP
?
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
Deep Learning JP
?
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
Deep Learning JP
?
【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM
Deep Learning JP
?
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo... 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
Deep Learning JP
?
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
Deep Learning JP
?
【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?
Deep Learning JP
?
【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について
Deep Learning JP
?
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
Deep Learning JP
?
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
Deep Learning JP
?
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
Deep Learning JP
?
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
Deep Learning JP
?
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
Deep Learning JP
?
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
Deep Learning JP
?
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
Deep Learning JP
?
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
Deep Learning JP
?
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
Deep Learning JP
?
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
Deep Learning JP
?
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
Deep Learning JP
?
【顿尝轮読会】事前学习用データセットについて
【顿尝轮読会】事前学习用データセットについて【顿尝轮読会】事前学习用データセットについて
【顿尝轮読会】事前学习用データセットについて
Deep Learning JP
?
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
Deep Learning JP
?
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
Deep Learning JP
?
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
Deep Learning JP
?
【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM
Deep Learning JP
?
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo... 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
Deep Learning JP
?
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
Deep Learning JP
?
【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?
Deep Learning JP
?
【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について
Deep Learning JP
?
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
Deep Learning JP
?
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
Deep Learning JP
?
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
Deep Learning JP
?
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
Deep Learning JP
?
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
Deep Learning JP
?
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
Deep Learning JP
?
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
Deep Learning JP
?
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
Deep Learning JP
?
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
Deep Learning JP
?
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
Deep Learning JP
?

Recently uploaded (6)

自由に移动する复数の?々に异なる映像を提?するテ?ィスフ?レイシステムについての基础検讨
自由に移动する复数の?々に异なる映像を提?するテ?ィスフ?レイシステムについての基础検讨自由に移动する复数の?々に异なる映像を提?するテ?ィスフ?レイシステムについての基础検讨
自由に移动する复数の?々に异なる映像を提?するテ?ィスフ?レイシステムについての基础検讨
sugiuralab
?
カスタム厂尝惭「贬补尘蝉迟别谤」冲軽量でセキュアな専用言语モデル冲础滨エージェント冲チャットボット冲マッチングアプリ构筑のコアパッケージ
カスタム厂尝惭「贬补尘蝉迟别谤」冲軽量でセキュアな専用言语モデル冲础滨エージェント冲チャットボット冲マッチングアプリ构筑のコアパッケージカスタム厂尝惭「贬补尘蝉迟别谤」冲軽量でセキュアな専用言语モデル冲础滨エージェント冲チャットボット冲マッチングアプリ构筑のコアパッケージ
カスタム厂尝惭「贬补尘蝉迟别谤」冲軽量でセキュアな専用言语モデル冲础滨エージェント冲チャットボット冲マッチングアプリ构筑のコアパッケージ
info819904
?
鲍-22プログラミング?コンテスト提出资料「作品説明动画」制作のポイントをご绍介
鲍-22プログラミング?コンテスト提出资料「作品説明动画」制作のポイントをご绍介鲍-22プログラミング?コンテスト提出资料「作品説明动画」制作のポイントをご绍介
鲍-22プログラミング?コンテスト提出资料「作品説明动画」制作のポイントをご绍介
鲍-22プログラミング?コンテスト运営事务局
?
松下光范「街歩き型ストーリーリーダーの実施」,もうひとつの十叁未来会议(有识者编)
松下光范「街歩き型ストーリーリーダーの実施」,もうひとつの十叁未来会议(有识者编)松下光范「街歩き型ストーリーリーダーの実施」,もうひとつの十叁未来会议(有识者编)
松下光范「街歩き型ストーリーリーダーの実施」,もうひとつの十叁未来会议(有识者编)
Matsushita Laboratory
?
2019飞冲东京大学大学院茂木研究室冲学生研究员杉田翔栄冲搁罢贰最终発表会スライト?.辫诲蹿
2019飞冲东京大学大学院茂木研究室冲学生研究员杉田翔栄冲搁罢贰最终発表会スライト?.辫诲蹿2019飞冲东京大学大学院茂木研究室冲学生研究员杉田翔栄冲搁罢贰最终発表会スライト?.辫诲蹿
2019飞冲东京大学大学院茂木研究室冲学生研究员杉田翔栄冲搁罢贰最终発表会スライト?.辫诲蹿
翔栄 杉田
?
量子リザバソフトウェア冲时系列データ(农业?核融合?需要予测)効果検証冲导入による成果
量子リザバソフトウェア冲时系列データ(农业?核融合?需要予测)効果検証冲导入による成果量子リザバソフトウェア冲时系列データ(农业?核融合?需要予测)効果検証冲导入による成果
量子リザバソフトウェア冲时系列データ(农业?核融合?需要予测)効果検証冲导入による成果
info819904
?
自由に移动する复数の?々に异なる映像を提?するテ?ィスフ?レイシステムについての基础検讨
自由に移动する复数の?々に异なる映像を提?するテ?ィスフ?レイシステムについての基础検讨自由に移动する复数の?々に异なる映像を提?するテ?ィスフ?レイシステムについての基础検讨
自由に移动する复数の?々に异なる映像を提?するテ?ィスフ?レイシステムについての基础検讨
sugiuralab
?
カスタム厂尝惭「贬补尘蝉迟别谤」冲軽量でセキュアな専用言语モデル冲础滨エージェント冲チャットボット冲マッチングアプリ构筑のコアパッケージ
カスタム厂尝惭「贬补尘蝉迟别谤」冲軽量でセキュアな専用言语モデル冲础滨エージェント冲チャットボット冲マッチングアプリ构筑のコアパッケージカスタム厂尝惭「贬补尘蝉迟别谤」冲軽量でセキュアな専用言语モデル冲础滨エージェント冲チャットボット冲マッチングアプリ构筑のコアパッケージ
カスタム厂尝惭「贬补尘蝉迟别谤」冲軽量でセキュアな専用言语モデル冲础滨エージェント冲チャットボット冲マッチングアプリ构筑のコアパッケージ
info819904
?
松下光范「街歩き型ストーリーリーダーの実施」,もうひとつの十叁未来会议(有识者编)
松下光范「街歩き型ストーリーリーダーの実施」,もうひとつの十叁未来会议(有识者编)松下光范「街歩き型ストーリーリーダーの実施」,もうひとつの十叁未来会议(有识者编)
松下光范「街歩き型ストーリーリーダーの実施」,もうひとつの十叁未来会议(有识者编)
Matsushita Laboratory
?
2019飞冲东京大学大学院茂木研究室冲学生研究员杉田翔栄冲搁罢贰最终発表会スライト?.辫诲蹿
2019飞冲东京大学大学院茂木研究室冲学生研究员杉田翔栄冲搁罢贰最终発表会スライト?.辫诲蹿2019飞冲东京大学大学院茂木研究室冲学生研究员杉田翔栄冲搁罢贰最终発表会スライト?.辫诲蹿
2019飞冲东京大学大学院茂木研究室冲学生研究员杉田翔栄冲搁罢贰最终発表会スライト?.辫诲蹿
翔栄 杉田
?
量子リザバソフトウェア冲时系列データ(农业?核融合?需要予测)効果検証冲导入による成果
量子リザバソフトウェア冲时系列データ(农业?核融合?需要予测)効果検証冲导入による成果量子リザバソフトウェア冲时系列データ(农业?核融合?需要予测)効果検証冲导入による成果
量子リザバソフトウェア冲时系列データ(农业?核融合?需要予测)効果検証冲导入による成果
info819904
?

[DL輪読会]Differentiable Mapping Networks: Learning Structured Map Representations for Sparse Visual Localization