The document discusses hyperparameter optimization in machine learning models. It introduces various hyperparameters that can affect model performance, and notes that as models become more complex, the number of hyperparameters increases, making manual tuning difficult. It formulates hyperparameter optimization as a black-box optimization problem to minimize validation loss and discusses challenges like high function evaluation costs and lack of gradient information.
本スライドは、弊社の梅本により弊社内の技術勉強会で使用されたものです。
近年注目を集めるアーキテクチャーである「Transformer」の解説スライドとなっております。
"Arithmer Seminar" is weekly held, where professionals from within and outside our company give lectures on their respective expertise.
The slides are made by the lecturer from outside our company, and shared here with his/her permission.
Arithmer株式会社は東京大学大学院数理科学研究科発の数学の会社です。私達は現代数学を応用して、様々な分野のソリューションに、新しい高度AIシステムを導入しています。AIをいかに上手に使って仕事を効率化するか、そして人々の役に立つ結果を生み出すのか、それを考えるのが私たちの仕事です。
Arithmer began at the University of Tokyo Graduate School of Mathematical Sciences. Today, our research of modern mathematics and AI systems has the capability of providing solutions when dealing with tough complex issues. At Arithmer we believe it is our job to realize the functions of AI through improving work efficiency and producing more useful results for society.
This document introduces deep reinforcement learning and provides some examples of its applications. It begins with backgrounds on the history of deep learning and reinforcement learning. It then explains the concepts of reinforcement learning, deep learning, and deep reinforcement learning. Some example applications are controlling building sway, optimizing smart grids, and autonomous vehicles. The document also discusses using deep reinforcement learning for robot control and how understanding the principles can help in problem setting.
The document discusses hyperparameter optimization in machine learning models. It introduces various hyperparameters that can affect model performance, and notes that as models become more complex, the number of hyperparameters increases, making manual tuning difficult. It formulates hyperparameter optimization as a black-box optimization problem to minimize validation loss and discusses challenges like high function evaluation costs and lack of gradient information.
本スライドは、弊社の梅本により弊社内の技術勉強会で使用されたものです。
近年注目を集めるアーキテクチャーである「Transformer」の解説スライドとなっております。
"Arithmer Seminar" is weekly held, where professionals from within and outside our company give lectures on their respective expertise.
The slides are made by the lecturer from outside our company, and shared here with his/her permission.
Arithmer株式会社は東京大学大学院数理科学研究科発の数学の会社です。私達は現代数学を応用して、様々な分野のソリューションに、新しい高度AIシステムを導入しています。AIをいかに上手に使って仕事を効率化するか、そして人々の役に立つ結果を生み出すのか、それを考えるのが私たちの仕事です。
Arithmer began at the University of Tokyo Graduate School of Mathematical Sciences. Today, our research of modern mathematics and AI systems has the capability of providing solutions when dealing with tough complex issues. At Arithmer we believe it is our job to realize the functions of AI through improving work efficiency and producing more useful results for society.
This document introduces deep reinforcement learning and provides some examples of its applications. It begins with backgrounds on the history of deep learning and reinforcement learning. It then explains the concepts of reinforcement learning, deep learning, and deep reinforcement learning. Some example applications are controlling building sway, optimizing smart grids, and autonomous vehicles. The document also discusses using deep reinforcement learning for robot control and how understanding the principles can help in problem setting.