Pendekatan Inversi Linier dengan Matriks Jacobi pada Kasus Permodelan Gravity...Fajar Perdana
Ìý
Script MATLAB ini melakukan inversi gravitasi untuk menentukan posisi pusat model bawah permukaan berdasarkan data observasi anomali gravitasi. Script ini melakukan iterasi dengan metode Jacobi untuk memperkecil standar deviasi misfit antara data kalkulasi dan observasi, hingga nilai epsilon mencapai 0,00001. Hasil akhir menunjukkan data kalkulasi sangat mendekati data observasi.
Dokumen tersebut membahas tentang fitting dan jenis-jenis variogram secara teoritis. Ada dua metode yang umumnya digunakan untuk menyesuaikan variogram eksperimental dengan variogram teoritis yaitu metode visual dan metode least square. Variogram digunakan untuk menentukan jarak dimana nilai-nilai data pengamatan tidak lagi saling terkait. Jenis-jenis variogram teoritis antara lain model bola, ekponensial, dan gauss.
Penyelesaian Raytracing dengan Bantuan Inversi Simulated AnnealingFajar Perdana
Ìý
Skrip MATLAB ini melakukan inversi tomografi seismik menggunakan metode Simulated Annealing untuk menentukan sudut tembakan terbaik dalam ray tracing antara sumber dan penerima gelombang seismik melalui tiga lapisan berbeda kecepatan."
This document provides an overview of static reservoir modeling. It discusses grid definition and selection, structural modeling using seismic data interpretation, stratigraphic modeling using well log correlation, lithological modeling to define facies distributions, and petrophysical modeling to estimate properties. Structural modeling involves identifying tops, interpreting faults manually or automatically using ant tracking. Stratigraphic modeling uses sequence stratigraphy and well log correlation. Lithological modeling integrates sedimentology, facies classification, and 3D distribution. Petrophysical modeling can be deterministic or stochastic to interpolate properties between wells.
Dokumen tersebut merangkum proses analisis kimia dan keseimbangan ion dari fluida geotermal. Ia menjelaskan prosedur pengambilan sampel, analisis parameter kimia minimum, penyajian data, dan perhitungan keseimbangan ion untuk menilai kualitas analisis kimia. Contoh perhitungan ion balance untuk beberapa lokasi menunjukkan analisis yang baik jika nilainya kurang dari 5%.
This document describes model-based seismic inversion performed on a 3D seismic dataset from the F3 block in the Dutch sector of the North Sea. The study area has complex geology from the Paleozoic to Cenozoic eras. The authors applied model-based inversion using Hampson-Russell software to determine lithology and fluid distributions in the target reservoir. They imported the 3D seismic cube, identified the target reservoir horizon, performed depth conversion and quality control, extracted the wavelet, built an initial model, ran the inversion, and analyzed the resulting acoustic impedance volume to characterize the subsurface.
Kuliah Hidrogeologi membahas genetika, proses, dan dinamika air di litosfer secara kuantitatif dan kualitatif agar mahasiswa dapat menganalisis hidrogeologi dengan baik. Kuliah ini memerlukan praktikum lapangan untuk menghasilkan laporan akhir. Setelah mengikuti kuliah ini, mahasiswa dapat menganalisis sistem hidrogeologi suatu daerah dengan tepat.
Materi Kuliah Geologi Struktur 10. analisis sesarMario Yuven
Ìý
Dokumen tersebut membahas tentang analisis sesar, termasuk data morfologi sesar, teori terbentuknya sesar, denah permukaan di bidang sesar, rekahan akibat gesekan, dan proyeksi kutub yang terkait dengan jenis sesar normal slip fault menurut klasifikasi Rickard tahun 1972.
Metoda magnetik mengukur variasi intensitas medan magnetik bumi akibat adanya variasi distribusi bahan magnetik di bawah permukaan. Pengukuran dilakukan di lapangan dan base menggunakan alat magnetometer dan SCINTREX. Data diolah untuk menafsirkan distribusi bahan magnetik dan geologi di bawah permukaan."
Role of Seismic Attributes in Petroleum Exploration_30May22.pptxNagaLakshmiVasa
Ìý
The document discusses seismic attributes which are measurable properties of seismic data computed through mathematical manipulation to highlight geological features. It describes how seismic waves are reflected and refracted and how this seismic response is recorded. The key types of seismic attributes discussed are amplitude, phase, frequency and complex trace attributes. Specific amplitude attributes like RMS amplitude and sweetness are explained. The document also covers applications of seismic attributes like direct hydrocarbon indication and limitations. Spectral decomposition and AVO/AVA analysis are also summarized.
Petrel course Module_1: Import data and management, make simple surfacesMarc Diviu Franco
Ìý
This document outlines an introduction course to Petrel software. It covers 5 modules: 1) Loading and editing data, 2) Digital mapping, 3) Surface reconstruction and editing, 4) Fault modeling, and 5) Facies modeling. The course will teach important Petrel functions like surface reconstruction, property modeling between horizons, and making grids and horizons. It provides examples of specific tasks like importing elevation data, draping maps, digitizing polygons for mapping, and modeling zones between reconstructed surfaces.
Peta struktur waktu dan isopach dianalisis untuk memahami struktur lapisan batuan. Peta struktur waktu menunjukkan variasi kedalaman berdasarkan perbedaan waktu gelombang seismik. Peta isopach mengukur ketebalan lapisan antara dua horizon. Analisis menunjukkan daerah dengan ketebalan maksimal 240-380 ms yang menandakan kemungkinan terjadinya deformasi atau pengangkatan batuan di daerah tersebut. Studi lebi
Dokumen ini menjelaskan penggunaan diagram Rosette untuk menentukan tegangan maksimum, medium, dan minimum serta arahnya pada puncak dan lembah berdasarkan nilai arah yang diperoleh dari kelurusan di lapangan. Diagram Rosette dibangun dalam program Dips untuk menganalisis data arah kelurusan guna mengidentifikasi pola tegangan.
3D Facies Modelling project using Petrel software. Msc Geology and Geophysics
Abstract
The Montserrat and Sant Llorenç del Munt fan-delta complexes were developed during the Eocene in the Ebro basin. The depositional stratigraphic record of these fan deltas has been described as a made up by a several transgressive and regressive composite sequences each made up by several fundamental sequences. Each sequence set is in turn composed by five main facies belts: proximal alluvial fan, distal alluvial fan, delta front, carbonates platforms and prodelta.
Using outcrop data from three composite sequences (Sant Vicenç, Vilomara and Manresa), a 3D facies model was built. The key sequential traces of the studied area georeferenced and digitalized on to photorealistic terrain models, were the hard data used as input to reconstruct the main surfaces, which are separating transgressive and regressive stacking patterns. Regarding the facies modelling has been achieved using a geostatistical algorithm in order to define the stacking trend and the interfingerings of adjacent facies belts, and five paleogeographyc maps to reproduce the paleogeometry of the facies belts within each system tract.
The final model has been checked, using a real cross section, and analysed in order to obtain information about the Delta Front facies which are the ones susceptible to be analogous of a reservoir. Attending to the results including eight probability maps of occurrence, the transgressive sequence set of Vilomara is the greatest accumulation of these facies explained by its agradational component.
1. The document discusses various methods for building velocity models in Petrel software using well and seismic data, including average velocity, layer cake, and anisotropic approaches.
2. It provides steps for incorporating well velocity data, seismic stacking velocities, and time-depth curves to create interval velocity surfaces. Quality control steps are described for horizon and fault interpretation before velocity modeling.
3. Examples are given of different velocity modeling methods in Petrel and their applications, including calibrated co-kriging, trend modeling, and layer cake approaches. Metrics for evaluating velocity model accuracy like well tie errors are also discussed.
The document discusses parameters for designing 2D and 3D seismic surveys. It explains that survey design aims to achieve geophysical objectives cost-effectively within time constraints. Key factors in design include target depth, resolution needs, and noise levels. Parameters that can be set include fold, offsets, bin size, and record length. The design must satisfy criteria like resolving the target, avoiding interference, and allowing for processing steps. Proper parameter selection depends on the exploration problem and existing seismic data.
1. The document defines key rock physics terms including density, porosity, saturation, velocity, impedance, Poisson's ratio, and reflection coefficients. Equations are provided for calculating these values from measured properties.
2. Methods of modeling reflection seismograms are described including normal reflection, reflection at an angle using Zoeppritz equations, AVO analysis, and impedance inversion.
3. Concepts of stress, strain, elasticity, elastic moduli, and their relationships to velocity are covered. The differences between static and dynamic moduli are also discussed.
This document outlines the key steps in a simple seismic data processing workflow, including: data initialization such as reformatting, geometry updates, and trace editing; amplitude processing; noise attenuation; deconvolution; multiple attenuation; velocity analysis and NMO; migration; stacking; and data makeup. Each processing step is briefly described and examples are provided of before and after visualizations. References and an opportunity for questions are provided at the end.
Dokumen ini menyajikan skala waktu geologi yang membagi sejarah bumi menjadi era, periode, dan zaman dengan rentang waktu perkiraan dalam jutaan tahun sejak Pra-Kambrium hingga Holosen saat ini.
Analisis petrofisika dilakukan terhadap data log sumur KP-03 di Struktur KP, Cekungan Sumatera Selatan. Tujuannya adalah menginterpretasi data log menggunakan Interactive Petrophysics untuk memperoleh nilai porositas, volume clay, water saturation, dan nett pay serta jenis fluida pengisi sumur. Berdasarkan analisis log resistivitas, densitas, dan neutron, didapatkan formasi penghasil yang berpotensi mengandung hidrokarbon adalah Formasi Talang Akar
This document summarizes the process of reservoir modeling and simulation for the Saldanadi Gas Field in Bangladesh using Petrel 2009.1.1 and FrontSim software. The workflow includes collecting seismic, well, and production data; interpreting horizons and faults from seismic lines; developing structural and stratigraphic models; modeling properties; simulating initial conditions and production; and history matching simulation results to field data. The objectives are to better understand reservoir characteristics, locate new wells, and forecast production and investment needs to further develop the field.
Experiments were conducted to test the relationship between void ratio (e) and applied pressure (p) in sediments under high pressures, as postulated by Terzaghi. Samples of various sediments were subjected to pressures up to 840kg/cm2. The results mostly supported Terzaghi's relationship, though some departures were observed. A pressure of around 250,000kg/cm2 was estimated to be needed for sediments to reach a state with no voids. Depth-density curves showed sediments would reach this state at around 1000m depth from compaction alone. The mechanism of compaction was also discussed.
This document describes model-based seismic inversion performed on a 3D seismic dataset from the F3 block in the Dutch sector of the North Sea. The study area has complex geology from the Paleozoic to Cenozoic eras. The authors applied model-based inversion using Hampson-Russell software to determine lithology and fluid distributions in the target reservoir. They imported the 3D seismic cube, identified the target reservoir horizon, performed depth conversion and quality control, extracted the wavelet, built an initial model, ran the inversion, and analyzed the resulting acoustic impedance volume to characterize the subsurface.
Kuliah Hidrogeologi membahas genetika, proses, dan dinamika air di litosfer secara kuantitatif dan kualitatif agar mahasiswa dapat menganalisis hidrogeologi dengan baik. Kuliah ini memerlukan praktikum lapangan untuk menghasilkan laporan akhir. Setelah mengikuti kuliah ini, mahasiswa dapat menganalisis sistem hidrogeologi suatu daerah dengan tepat.
Materi Kuliah Geologi Struktur 10. analisis sesarMario Yuven
Ìý
Dokumen tersebut membahas tentang analisis sesar, termasuk data morfologi sesar, teori terbentuknya sesar, denah permukaan di bidang sesar, rekahan akibat gesekan, dan proyeksi kutub yang terkait dengan jenis sesar normal slip fault menurut klasifikasi Rickard tahun 1972.
Metoda magnetik mengukur variasi intensitas medan magnetik bumi akibat adanya variasi distribusi bahan magnetik di bawah permukaan. Pengukuran dilakukan di lapangan dan base menggunakan alat magnetometer dan SCINTREX. Data diolah untuk menafsirkan distribusi bahan magnetik dan geologi di bawah permukaan."
Role of Seismic Attributes in Petroleum Exploration_30May22.pptxNagaLakshmiVasa
Ìý
The document discusses seismic attributes which are measurable properties of seismic data computed through mathematical manipulation to highlight geological features. It describes how seismic waves are reflected and refracted and how this seismic response is recorded. The key types of seismic attributes discussed are amplitude, phase, frequency and complex trace attributes. Specific amplitude attributes like RMS amplitude and sweetness are explained. The document also covers applications of seismic attributes like direct hydrocarbon indication and limitations. Spectral decomposition and AVO/AVA analysis are also summarized.
Petrel course Module_1: Import data and management, make simple surfacesMarc Diviu Franco
Ìý
This document outlines an introduction course to Petrel software. It covers 5 modules: 1) Loading and editing data, 2) Digital mapping, 3) Surface reconstruction and editing, 4) Fault modeling, and 5) Facies modeling. The course will teach important Petrel functions like surface reconstruction, property modeling between horizons, and making grids and horizons. It provides examples of specific tasks like importing elevation data, draping maps, digitizing polygons for mapping, and modeling zones between reconstructed surfaces.
Peta struktur waktu dan isopach dianalisis untuk memahami struktur lapisan batuan. Peta struktur waktu menunjukkan variasi kedalaman berdasarkan perbedaan waktu gelombang seismik. Peta isopach mengukur ketebalan lapisan antara dua horizon. Analisis menunjukkan daerah dengan ketebalan maksimal 240-380 ms yang menandakan kemungkinan terjadinya deformasi atau pengangkatan batuan di daerah tersebut. Studi lebi
Dokumen ini menjelaskan penggunaan diagram Rosette untuk menentukan tegangan maksimum, medium, dan minimum serta arahnya pada puncak dan lembah berdasarkan nilai arah yang diperoleh dari kelurusan di lapangan. Diagram Rosette dibangun dalam program Dips untuk menganalisis data arah kelurusan guna mengidentifikasi pola tegangan.
3D Facies Modelling project using Petrel software. Msc Geology and Geophysics
Abstract
The Montserrat and Sant Llorenç del Munt fan-delta complexes were developed during the Eocene in the Ebro basin. The depositional stratigraphic record of these fan deltas has been described as a made up by a several transgressive and regressive composite sequences each made up by several fundamental sequences. Each sequence set is in turn composed by five main facies belts: proximal alluvial fan, distal alluvial fan, delta front, carbonates platforms and prodelta.
Using outcrop data from three composite sequences (Sant Vicenç, Vilomara and Manresa), a 3D facies model was built. The key sequential traces of the studied area georeferenced and digitalized on to photorealistic terrain models, were the hard data used as input to reconstruct the main surfaces, which are separating transgressive and regressive stacking patterns. Regarding the facies modelling has been achieved using a geostatistical algorithm in order to define the stacking trend and the interfingerings of adjacent facies belts, and five paleogeographyc maps to reproduce the paleogeometry of the facies belts within each system tract.
The final model has been checked, using a real cross section, and analysed in order to obtain information about the Delta Front facies which are the ones susceptible to be analogous of a reservoir. Attending to the results including eight probability maps of occurrence, the transgressive sequence set of Vilomara is the greatest accumulation of these facies explained by its agradational component.
1. The document discusses various methods for building velocity models in Petrel software using well and seismic data, including average velocity, layer cake, and anisotropic approaches.
2. It provides steps for incorporating well velocity data, seismic stacking velocities, and time-depth curves to create interval velocity surfaces. Quality control steps are described for horizon and fault interpretation before velocity modeling.
3. Examples are given of different velocity modeling methods in Petrel and their applications, including calibrated co-kriging, trend modeling, and layer cake approaches. Metrics for evaluating velocity model accuracy like well tie errors are also discussed.
The document discusses parameters for designing 2D and 3D seismic surveys. It explains that survey design aims to achieve geophysical objectives cost-effectively within time constraints. Key factors in design include target depth, resolution needs, and noise levels. Parameters that can be set include fold, offsets, bin size, and record length. The design must satisfy criteria like resolving the target, avoiding interference, and allowing for processing steps. Proper parameter selection depends on the exploration problem and existing seismic data.
1. The document defines key rock physics terms including density, porosity, saturation, velocity, impedance, Poisson's ratio, and reflection coefficients. Equations are provided for calculating these values from measured properties.
2. Methods of modeling reflection seismograms are described including normal reflection, reflection at an angle using Zoeppritz equations, AVO analysis, and impedance inversion.
3. Concepts of stress, strain, elasticity, elastic moduli, and their relationships to velocity are covered. The differences between static and dynamic moduli are also discussed.
This document outlines the key steps in a simple seismic data processing workflow, including: data initialization such as reformatting, geometry updates, and trace editing; amplitude processing; noise attenuation; deconvolution; multiple attenuation; velocity analysis and NMO; migration; stacking; and data makeup. Each processing step is briefly described and examples are provided of before and after visualizations. References and an opportunity for questions are provided at the end.
Dokumen ini menyajikan skala waktu geologi yang membagi sejarah bumi menjadi era, periode, dan zaman dengan rentang waktu perkiraan dalam jutaan tahun sejak Pra-Kambrium hingga Holosen saat ini.
Analisis petrofisika dilakukan terhadap data log sumur KP-03 di Struktur KP, Cekungan Sumatera Selatan. Tujuannya adalah menginterpretasi data log menggunakan Interactive Petrophysics untuk memperoleh nilai porositas, volume clay, water saturation, dan nett pay serta jenis fluida pengisi sumur. Berdasarkan analisis log resistivitas, densitas, dan neutron, didapatkan formasi penghasil yang berpotensi mengandung hidrokarbon adalah Formasi Talang Akar
This document summarizes the process of reservoir modeling and simulation for the Saldanadi Gas Field in Bangladesh using Petrel 2009.1.1 and FrontSim software. The workflow includes collecting seismic, well, and production data; interpreting horizons and faults from seismic lines; developing structural and stratigraphic models; modeling properties; simulating initial conditions and production; and history matching simulation results to field data. The objectives are to better understand reservoir characteristics, locate new wells, and forecast production and investment needs to further develop the field.
Experiments were conducted to test the relationship between void ratio (e) and applied pressure (p) in sediments under high pressures, as postulated by Terzaghi. Samples of various sediments were subjected to pressures up to 840kg/cm2. The results mostly supported Terzaghi's relationship, though some departures were observed. A pressure of around 250,000kg/cm2 was estimated to be needed for sediments to reach a state with no voids. Depth-density curves showed sediments would reach this state at around 1000m depth from compaction alone. The mechanism of compaction was also discussed.
Dokumen tersebut merangkum metode seismik refraksi untuk eksplorasi geofisika, meliputi pendahuluan tentang prinsip dasar metode ini, alat dan prosedur akuisisi data, teknik pengolahan data seperti picking first break dan analisis kecepatan, serta contoh hasil modeling dari 10 line survei yang diambil.
The document discusses various techniques related to gravity surveying and data processing. It covers 1) Newton's law of gravity and calculations, 2) corrections to gravity data including latitude, elevation and terrain corrections, 3) determining densities of rocks, 4) calculating the mass and density of Earth, and 5) separating regional and residual gravity anomalies through various filtering methods.
1. ALGORITMA
Secara umum Band Limited Impedance Inversion (BLIMP) merupakan salah satu metode inversi yang
menutupi sifat data seismik yang limited frequency (~ 10-80 Hz) dengan data low ( ~10 Hz) frequency
dari Impedance log. Ini dapat digunakan untuk membaliksan data seismik menggunakan data sumur,
atau beberapa fungsi impedansi yang diketahui, untuk menyediakan data frekuensi rendah, umum
digunakan pada metoda akuisisi, yang diperlukan untuk proses inversi. Algoritmanya adalah sebagai
berikut (Ferguson & Margrave, 1996),
1. Compute the linear trend of the impedance estimate and subtract it (this reduces edge effects
during subsequent frequency domain operations).
2. Compute the Fourier spectra of (1).
3. Apply a band-limited integration filter to each seismic trace and exponentiate the result.
4. Compute the Fourier spectra of (3).
5. Determine a scalar to match the mean power of (4) and (2) over the seismic signal band.
6. Multiply the spectra of (4) by the scalar from (5).
7. Low-pass filter (2) and add to (6).
8. Inverse Fourier transform (7).
9. Add the low-frequency trend from (1) to (7)
The required filters in steps (3), (5) and (7) are designed using the same user
specified Gaussian rolloff at high and low frequencies.
DATA AWAL
Sebagi data awal untuk melakukan proses BLIMP dibutuhkan data impedansi akustik dan data
seismik. Untuk kedua data ini, saya membuatnya secara sintetik. Berikut beberapa parameter yang
digunakan untuk men-generate data awal dan juga dalam proses me-run program BLIMP ini,
ï‚· Data impedansi memakai TWT maksimal 1 s dan trend lnier dengan persamaan y=x*500 + 3500.
Besar nilai dan trend impedansi mencoba merefer pada litologi wet sand (dari Bourbie, Coussy,
and Zinszner, Acoustic of Porous Media, Gulf publishing).
ï‚· Data seismik memakai mother wavelet jenis Ricket
ï‚· Kedua data sintetik impedansi akustik dan juga sesimik di-generate dengan menggunakan fungsi
random dengan sampling rate 5 ms ïƒ 200 data
ï‚· Frekuensi sampling 200 Hz
 Faktor skalar λ=2/ϒ dengan ϒ adalah faktor konversi
KODE MATLAB
Berikut kode matlab yang digunakan untuk mengeksekusi program Band-limited Impedance
Inversion sesuai dengan algoritma diatas,
%%% TUGAS UAS SEISMIK INVERSI RESRVOIR
%%% NAMA: FAJAR NUGRAHA PERDANA
%%% NIM: 12309023
%%% TANGGAL: 06 MEI 2013
%%% BAND LIMITED IMPEDANCE INVERSION
clc,clear all
%%% Membuat data sintetik impedansi akustik
TWT=(1:5:1000)/1000; % dalam second
2. 2
ndata=length(TWT);
AI_awal=400*ones(1,200); % ref impedansi wet sand
Q1=AI_awal(1:50)+200.*randn(1,50);
Q2=AI_awal(51:100)+(50.*randn(1,50));
Q3=AI_awal(101:150)+(100.*randn(1,50));
Q4=AI_awal(151:200)+(250.*randn(1,50));
AI_N=[Q1 Q2 Q3 Q4]; % matrix log - trend
trend=TWT*500+3500;
AI=AI_N+trend; % data sintetik log impedance
figure (9)
plot(TWT,AI)
title('Log Impedance')
ylabel('Acoustic Impedance')
xlabel('TWT (s)')
%%% Membuat data seismik sintetik
% Membuat Ricket wavelet
var=0.5; tmin=-10; tmax=10; dt=0.1;
t=(tmin:dt:tmax);
cakra=2 / sqrt(3*var)*pi^0.25;
bobby=1 - ((t.^2)/(var.^2));
yudha=exp((-t.^2)/(2*var.^2));
ric=cakra*bobby.*yudha;
figure(10)
plot(t,ric,'-r','LineWidth',2)
title('Ricker (Mexicanhat) Wavelet')
xlim([tmin tmax]); ylim([-1.5 2.5])
grid(gca,'minor')
% Membuat Koefisien refleksi
k=length(AI);
for i=1:(k-1);
RC(i)=(AI(i+1)-AI(i))/(AI(i+1)+AI(i));
end
RC=[0 RC];
% Membuat data seismik sintetik
seis_sin=conv(RC,ric); % konvolusi
seis_sin(length(seis_sin)-100:length(seis_sin))=[];
seis_sin(1:100-1)=[];
% Plot Imp, RC dan sintetik seismik
figure(11)
subplot(1,3,1)
plot(AI,TWT)
title('Log Impedance')
xlabel('Acoustic Impedance')
xlim([3000 5500])
ylabel('TWT (s)')
set(gca,'YDir','reverse')
subplot(1,3,2)
plot(RC,TWT)
title('Reflection Coefficient')
3. 3
xlabel('RC')
ylabel('TWT (s)')
set(gca,'YDir','reverse')
subplot(1,3,3)
plot(seis_sin,TWT)
title('Synthetic Seismic')
xlabel('Amplitude')
ylabel('TWT (s)')
set(gca,'YDir','reverse')
%%% STEP 1
% Compute the linear trend of the impedance estimate and subtract it (this reduces edge effects
during subsequent frequency domain operations).
reg=polyfit(TWT,AI,1); % Linier
trend_AI=polyval(reg,TWT); % Membuat nilai trend
figure(12)
subplot(1,3,1)
plot(AI,TWT)
title('Log Impedance')
xlabel('Acoustic Impedance')
xlim([3000 5500])
ylabel('TWT (s)')
set(gca,'YDir','reverse')
subplot(1,3,2)
plot(trend_AI,TWT,'r','LineWidth',2)
title('Linear Impedance Trend')
xlabel('Acoustic Impedance')
xlim([3000 5500])
ylabel('TWT (s)')
set(gca,'YDir','reverse')
% Log Impedance - Trend
IMP_Trend=AI-trend_AI;
subplot(1,3,3)
plot(IMP_Trend,TWT)
title('Log Impedance - Trend')
xlabel('Acoustic Impedance')
ylabel('TWT (s)')
set(gca,'YDir','reverse')
%%% STEP 2
% Compute the Fourier spectra of (1)
% Set parameter awal untuk Spectral Analysis dengan FFT
time=TWT; % Waktu
sampfreq=200; % Frequency sampling
fr=sampfreq*((0:ndata)/ndata); % Range frekuensi
% Membuat log data hasil FFT
A=fft(IMP_Trend,ndata); A=[A 0]; % FFT to freq domain
4. 4
B=A.*conj(A); % Magnitude
figure (13)
plot(fr(1:ndata +1),B(1:ndata +1)); % Menampilkan dengan fc
fill(fr(1:ndata +1),B(1:ndata +1),'b','EdgeColor','none')
line([100 100],[0 4e+7],'Color','r','LineStyle','-','LineWidth',2)
text(100,max(B),'Frequency Cut-off rightarrow','HorizontalAlignment','right')
title('Magnitude vs Frequency')
ylabel('|A|')
grid(gca,'minor')
%%% STEP 3 & 4
% Apply a band-limited integration filter to each seismic trace and exponentiate the result.
% Compute the Fourier spectra of (3)
% Membuat FFT data seismik
C=fft(seis_sin,ndata); C=[C 0]; % FFT to freq domain
D=C.*conj(C); % Magnitude
figure (14)
subplot(4,1,1)
plot(fr(1:ndata +1),D(1:ndata +1)); % Menampilkan dengan fc
fill(fr(1:ndata +1),D(1:ndata +1),'b','EdgeColor','none')
line([100 100],[0 10],'Color','r','LineStyle','-','LineWidth',2)
text(100,10,'Frequency Cut-off rightarrow','HorizontalAlignment','right')
title('Magnitude vs Frequency Seismogram Sintetik')
ylabel('|A|');
% Band-pass filter data seismik 10-80 hz
% Spectrum of band-pass filter(10-80hz)
n_lowfr=10*(ndata/200);
n_highfr=80*(ndata/200)-n_lowfr+1;
sisa_bandfr=ndata-2*n_highfr-2*n_lowfr+1;
band_freq=[zeros(1,n_lowfr) ones(1,n_highfr) zeros(1,sisa_bandfr) ones(1,n_highfr)
zeros(1,n_lowfr)];
subplot(4,1,2)
plot(fr(1:ndata +1),band_freq(1:ndata +1),'g','LineWidth',2)
title('Band-pass Filter 10-80 Hz')
% Filtered-bandpass seismic trace real-imajiner
filtered_seistrace_realimag=band_freq.*C;
subplot(4,1,3)
plot(fr(1:ndata +1),filtered_seistrace_realimag(1:ndata +1))
title('Seismic Trace Filtered Frequency')
ylabel('A')
% Filtered-bandpass seismic trace
filtered_seistrace=band_freq.*D;
subplot(4,1,4)
plot(fr(1:ndata +1),filtered_seistrace(1:ndata +1))
title('Seismic Trace Filtered Frequency')
ylabel('|A|')
xlabel('Frequency (Hz)')
%%% STEP 4+
% Inverse FFT dan plot hasil seismik trace yang telah ter-filter
E=(ifft(filtered_seistrace_realimag,ndata));
5. 5
figure (15)
subplot(2,1,1)
plot(TWT(1:ndata),seis_sin(1:ndata),'b','LineWidth',2)
title('Synthetic Seismic Trace')
ylabel('Amplitude')
xlabel('TWT (s)')
grid(gca,'minor')
subplot(2,1,2)
plot(TWT(1:ndata),E(1:ndata),'m','LineWidth',2)
title('Seismic Trace Filtered')
ylabel('Amplitude')
xlabel('TWT (s)')
grid(gca,'minor')
%%% STEP 5
% Determine a scalar to match the mean power of (4) and (2) over the seismic signal band.
gamma=((max(D)-min(D))/(max(B)-min(B)));
lambda=(2/gamma);
%%% STEP 6
% Multiply the spectra of (4) by the scalar from (5)
scaled_seis=filtered_seistrace*lambda;
scaled_seis_realimag=filtered_seistrace_realimag*sqrt(lambda);
%%% STEP 7
% Low-pass filter (2) and add to (6)
figure (16)
subplot(4,1,1)
plot(fr(1:ndata +1),B(1:ndata +1)); % Menampilkan dengan fc
fill(fr(1:ndata +1),B(1:ndata +1),'b','EdgeColor','none')
line([100 100],[0 4e+7],'Color','r','LineStyle','-','LineWidth',2)
text(100,max(B),'Frequency Cut-off rightarrow','HorizontalAlignment','right')
title('Magnitude vs Frequency')
ylabel('|A|')
% Lowpas-filter 10hz
% Spectrum of low-cut filter(10hz)
n_lowfr=10*(ndata/200)+1;
sisa_lowfr=ndata - 2*n_lowfr+1;
low_freq=[ones(1,n_lowfr) zeros(1,sisa_lowfr) ones(1,n_lowfr)];
subplot(4,1,2)
plot(fr(1:ndata +1),low_freq(1:ndata +1),'g','LineWidth',2)
title('Low-Cut filter 10 Hz')
% Lowpass 10hz real-imajiner
filtered_realimag=low_freq.*A;
subplot(4,1,3)
plot(fr(1:ndata +1),filtered_realimag(1:ndata +1))
title('Filtered 10 Hz')
ylabel('A');
% Filtered-lowpass for log
filtered_log=low_freq.*B;
subplot(4,1,4)
6. 6
plot(fr(1:ndata +1),filtered_log(1:ndata +1))
title('Filtered 10 Hz')
xlabel('Frequency (Hz)');
ylabel('|A|');
% Add filtered impedance log to spectrum of integrated RC
spc_log_scaled=scaled_seis+filtered_log;
spc_log_scaled_realimag=filtered_realimag+scaled_seis_realimag;
% Plotting hasil penggabungan
figure(17)
subplot(2,2,1)
plot(fr(1:ndata/2),filtered_log(1:ndata/2))
fill(fr(1:ndata/2),filtered_log(1:ndata/2),'b','EdgeColor','none')
title('Spectrum of filtered log')
ylabel('|A|')
xlabel('Frequency (Hz)')
subplot(2,2,2)
plot(fr(1:ndata/2),filtered_seistrace(1:ndata/2))
fill(fr(1:ndata/2),filtered_seistrace(1:ndata/2),'b','EdgeColor','none')
title('Spectrum of Integrated RC')
ylabel('|A|')
xlabel('Frequency (Hz)')
subplot(2,2,3:4)
plot(fr(1:ndata/2),spc_log_scaled(1:ndata/2),'b','LineWidth',2)
fill(fr(1:ndata/2),spc_log_scaled(1:ndata/2),'b','EdgeColor','none')
title('Spectrum of filtered log + Integrated RC')
ylabel('|A|')
xlabel('Frequency (Hz)')
%%% STEP 8 & 9
% Inverse Fourier transform (7)
% Add the low-frequency trend from (1) to (7)
F=(ifft(spc_log_scaled_realimag,ndata));
G=F+trend_AI;
figure (18)
plot(TWT(1:ndata),AI(1:ndata),'b')
hold on
plot(TWT(1:ndata),G(1:ndata),'r','LineWidth',2)
title('BLIMP vs Log Impedance')
ylabel('Acoustic Impedance')
xlabel('TWT (s)')
legend('Log','BLIMP')
7. 7
OUTPUT
Kode matlab diatas jika dijalankan maka akan memberikan output yang hampir semuanya berupa
gambar grafik dari proses BLIMP. Berikut output yang dihasilkan,
Figure 9
Data sintetik log impedansi
Figure 10
Ricket mother wavelet yang digunakan dalam membuat tras seismik
8. 8
Figure 11
Log impedansi, koeffisien refleksi, dan juga tras seismik sintetik hasil konvolusi RC dengan wavelet
Figure 12
Log impedansi dan trend yang dimilikinya
Figure 13
Spektrum frekuensi dari data log impedansi
9. 9
Figure 14
Data seismik yang berusaha difilter oleh filter frekuensi sedang-tinggi (10-80 Hz)
Figure 15
Tampilan tras seismik yang belum dan telah terfilter
Figure 16
Data log impedansi yang berusaha difilter oleh filter frekuensi rendah (~10 Hz)
10. 10
Figure 17
Kombinasi spektrum dari data log impedansi terfilter dan juga data seismik terfilter
Figure 18
Perbandingan dari impedansi log dan impedansi inversi
Dari gambar diatas dapat dilihat bahwa terjadi korelasi yang sangat baik antara data log impedansi
(biru), sebagai data awal yang kita punya, dengan data impedansi hasil dari pendekatan inversi
menggunakan BLIMP (merah). Terlihat juga data impedansi inversi mempunyai karakteristik grafik
yang lebih halus dibandingkan dengan data log impedansi.
Pustaka
Robert J. Ferguson and Gary F. Margrave, 1996, A simple algorithm for band-limited impedance
inversion: CREWES Research Report Vol. 8