際際滷

際際滷Share a Scribd company logo
using an accurate beta approximation
PAULA TATARU
THOMAS BATAILLON
ASGER HOBOLTH
AARHUS
UNIVERSITY
Bioinformatics
Research Centre
Vienna, July 17th 2015
Inference under the Wright-Fisher model
An accurate Beta approximationPaula Tataru paula@birc.au.dk
Inference of population
history from DNA data
 Divergence times
 (Variable) population size
 Migration / admixture
 Selection coefficients
Inference problems
An accurate Beta approximationPaula Tataru paula@birc.au.dk
Inference of population
history from DNA data
 Divergence times
 (Variable) population size
 Migration / admixture
 Selection coefficients
Model
 Wrigth-Fisher
Inference problems
An accurate Beta approximationPaula Tataru paula@birc.au.dk
Inference problems: populations divergence
M. Gautier and R. Vitalis. Inferring population histories using genome-wide allele frequency data.
Molecular biology and evolution, 30(3):654668, 2013
Kim Tree
An accurate Beta approximationPaula Tataru paula@birc.au.dk
Inference problems: populations admixture
J. K. Pickrell and J. K. Pritchard. Inference of population splits and mixtures from genome-wide allele
frequency data. PLOS Genetics, 8(11):e1002967, 2012
TreeMix
An accurate Beta approximationPaula Tataru paula@birc.au.dk
Inference problems: loci under selection
Steinr端cken M. et al. S. A novel spectral method for inferring general selection from time series
genetic data. The Annals of Applied Statistics 8(4):22032222, 2014
spectralHMM
An accurate Beta approximationPaula Tataru paula@birc.au.dk
Inference problems: loci under selection
Terhorst J. et al.. S. Multi-locus analysis of genomic time series data from experimental evolution.
PLoS Genetics 11(4):e1005069, 2015
An accurate Beta approximationPaula Tataru paula@birc.au.dk
Population genetics: the Wright-Fisher model
individuals
generations(time)
An accurate Beta approximationPaula Tataru paula@birc.au.dk
Population genetics: the Wright-Fisher model
 Evolution of
allele frequency
forward in time
at a bi-allelic locus
individuals
generations(time)
3
2
3
3
4
5
5
allele count
An accurate Beta approximationPaula Tataru paula@birc.au.dk
Allele frequency distribution
An accurate Beta approximationPaula Tataru paula@birc.au.dk
Diffusion Moment-based
Approximations to the Wright-Fisher
An accurate Beta approximationPaula Tataru paula@birc.au.dk
Diffusion
 Large population size
 Infinitesimal change
Moment-based
Approximations to the Wright-Fisher
An accurate Beta approximationPaula Tataru paula@birc.au.dk
Diffusion
 Large population size
 Infinitesimal change
Moment-based
 Convenient distributions
 Normal distribution
 Beta distribution
Approximations to the Wright-Fisher
An accurate Beta approximationPaula Tataru paula@birc.au.dk
Diffusion
 Large population size
 Infinitesimal change
 No closed solution
 Cumbersome to evaluate
Moment-based
 Convenient distributions
 Normal distribution
 Beta distribution
Approximations to the Wright-Fisher
An accurate Beta approximationPaula Tataru paula@birc.au.dk
Diffusion
 Large population size
 Infinitesimal change
 No closed solution
 Cumbersome to evaluate
Moment-based
 Convenient distributions
 Normal distribution
 Beta distribution
 Closed analytical forms
 Fast to evaluate
Approximations to the Wright-Fisher
An accurate Beta approximationPaula Tataru paula@birc.au.dk
Diffusion
 Large population size
 Infinitesimal change
 No closed solution
 Cumbersome to evaluate
Moment-based
 Convenient distributions
 Normal distribution
 Beta distribution
 Closed analytical forms
 Fast to evaluate
 Problematic at boundaries
Approximations to the Wright-Fisher
An accurate Beta approximationPaula Tataru paula@birc.au.dk
Normal distribution
 Support: real line
Beta distribution
 Support: [0, 1]
Behavior at the boundaries
An accurate Beta approximationPaula Tataru paula@birc.au.dk
Normal distribution
 Support: real line
 Truncation
 Incorrect variance
Beta distribution
 Support: [0, 1]
Behavior at the boundaries
An accurate Beta approximationPaula Tataru paula@birc.au.dk
Normal distribution
 Support: real line
 Truncation
 Incorrect variance
 Intermediary frequencies
Beta distribution
 Support: [0, 1]
 Intermediary frequencies
Behavior at the boundaries
An accurate Beta approximationPaula Tataru paula@birc.au.dk
The Beta with spikes
Use of Wright-Fisher
 Scalable
Use of moments
 Simple mathematical calculations
Improve behavior at boundaries
 Preserve mean and variance
An accurate Beta approximationPaula Tataru paula@birc.au.dk
The Wright Fisher model
 Zt allele count
 Xt = Zt /2N
 Zt+1 follows a binomial
distribution
individuals
generations(time)
3
2
3
3
4
5
5
allele count
An accurate Beta approximationPaula Tataru paula@birc.au.dk
The Wright Fisher model
 Zt allele count
 Xt = Zt /2N
 Zt+1 follows a binomial
distribution
individuals
generations(time)
3
2
3
3
4
5
5
allele count
An accurate Beta approximationPaula Tataru paula@birc.au.dk
The Wright Fisher model
 Zt allele count
 Xt = Zt /2N
 Zt+1 follows a binomial
distribution
 g encodes the
evolutionary pressures
individuals
generations(time)
3
2
3
3
4
5
5
allele count
An accurate Beta approximationPaula Tataru paula@birc.au.dk
The Wright Fisher model: Drift only
individuals
generations(time)
3
2
3
3
4
5
5
allele count
An accurate Beta approximationPaula Tataru paula@birc.au.dk
The Wright Fisher model: Mutations
individuals
generations(time)
3
2
4
5
4
3
2
allele count
u v
An accurate Beta approximationPaula Tataru paula@birc.au.dk
The Wright Fisher model: Mutations
individuals
generations(time)
3
2
4
5
4
3
2
allele count
u v
An accurate Beta approximationPaula Tataru paula@birc.au.dk
The Wright Fisher model: Migration
individuals
generations(time)
3
2
3
5
4
2
3
allele count
m1 m2
An accurate Beta approximationPaula Tataru paula@birc.au.dk
The Wright Fisher model: Migration
individuals
generations(time)
3
2
3
5
4
2
3
allele count
m1 m2
An accurate Beta approximationPaula Tataru paula@birc.au.dk
The Wright Fisher model: Linear forces
An accurate Beta approximationPaula Tataru paula@birc.au.dk
The Wright Fisher model: Linear forces
Mutations
An accurate Beta approximationPaula Tataru paula@birc.au.dk
The Wright Fisher model: Linear forces
Mutations
Migration
An accurate Beta approximationPaula Tataru paula@birc.au.dk
The Wright Fisher model: Linear forces
Mutations
Migration
Mutations & Migration
An accurate Beta approximationPaula Tataru paula@birc.au.dk
The Wright Fisher model: Linear forces
Mutations
Migration
Mutations & Migration
An accurate Beta approximationPaula Tataru paula@birc.au.dk
DAF: the density of Xt
The Beta approximation: Main idea
An accurate Beta approximationPaula Tataru paula@birc.au.dk
DAF: the density of Xt
Use recursive approach to calculate
 Mean and variance
The Beta approximation: Main idea
An accurate Beta approximationPaula Tataru paula@birc.au.dk
The Beta approximation: Drift only
An accurate Beta approximationPaula Tataru paula@birc.au.dk
The Beta with spikes: Main idea
DAF: the density of Xt
An accurate Beta approximationPaula Tataru paula@birc.au.dk
The Beta with spikes: Main idea
DAF: the density of Xt
Use recursive approach to calculate
 Loss and fixation probabilities
An accurate Beta approximationPaula Tataru paula@birc.au.dk
The Beta with spikes: Drift only
An accurate Beta approximationPaula Tataru paula@birc.au.dk
The Beta with spikes: Drift only
An accurate Beta approximationPaula Tataru paula@birc.au.dk
Numerical accuracy: Drift only
Beta Beta with spikes
An accurate Beta approximationPaula Tataru paula@birc.au.dk
Simulated data
 5000 independent SNPs
 100 samples
in each population
 50 data sets (replicates)
Inference of divergence times: Drift only
An accurate Beta approximationPaula Tataru paula@birc.au.dk
Simulated data
 5000 independent SNPs
 100 samples
in each population
 50 data sets (replicates)
DAF is used for likelihood
calculation
Inference of divergence times: Drift only
An accurate Beta approximationPaula Tataru paula@birc.au.dk
Simulated data
 5000 independent SNPs
 100 samples
in each population
 50 data sets (replicates)
DAF is used for likelihood
calculation
Likelihood is conditioned
to polymorphism
Inference of divergence times: Drift only
An accurate Beta approximationPaula Tataru paula@birc.au.dk
Simulated data
 5000 independent SNPs
 100 samples
in each population
 50 data sets (replicates)
DAF is used for likelihood
calculation
Likelihood is conditioned
to polymorphism
Likelihood is numerically
optimized
Inference of divergence times: Drift only
An accurate Beta approximationPaula Tataru paula@birc.au.dk
Inference of divergence times: Drift only
An accurate Beta approximationPaula Tataru paula@birc.au.dk
Inference of divergence times: Drift only
Exome sequencing: 42,063 autosomal syn SNPs
6 western
12 central
11 eastern
Thomas Bataillon et al.
Genome Biol Evol 2015; 7:1122-1132
An accurate Beta approximationPaula Tataru paula@birc.au.dk
Inference of divergence times: Drift only
An accurate Beta approximationPaula Tataru paula@birc.au.dk
Inference of divergence times: Drift only
P. Tataru, T. Bataillon, A. Hobolth. Inference under a Wright-Fisher model using an accurate beta
approximation. bioRxiv, 2015
An accurate Beta approximationPaula Tataru paula@birc.au.dk
Conclusions: beta with spikes
An extension built on the beta approximation
An accurate Beta approximationPaula Tataru paula@birc.au.dk
Conclusions: beta with spikes
An extension built on the beta approximation
Improves the quality of the approximation
An accurate Beta approximationPaula Tataru paula@birc.au.dk
Conclusions: beta with spikes
An extension built on the beta approximation
Improves the quality of the approximation
Simple mathematical formulation
An accurate Beta approximationPaula Tataru paula@birc.au.dk
Conclusions: beta with spikes
An extension built on the beta approximation
Improves the quality of the approximation
Simple mathematical formulation
Works under linear evolutionary forces
An accurate Beta approximationPaula Tataru paula@birc.au.dk
Conclusions: beta with spikes
An extension built on the beta approximation
Improves the quality of the approximation
Simple mathematical formulation
Works under linear evolutionary forces
Comparable to state of the art methods
for inference of divergence times
An accurate Beta approximationPaula Tataru paula@birc.au.dk
Conclusions: beta with spikes
An extension built on the beta approximation
Improves the quality of the approximation
Simple mathematical formulation
Works under linear evolutionary forces
Comparable to state of the art methods
for inference of divergence times
Recursive formulation enables incorporation
of variable population size
An accurate Beta approximationPaula Tataru paula@birc.au.dk
Future work
Incorporate selection
 Non-linear evolutionary force
An accurate Beta approximationPaula Tataru paula@birc.au.dk
Future work
Incorporate selection
 Non-linear evolutionary force
 Positive selection increases probability of fixation
An accurate Beta approximationPaula Tataru paula@birc.au.dk
Future work
Incorporate selection
 Non-linear evolutionary force
 Positive selection increases probability of fixation
 Mean and variance are no longer available in closed form*
* Terhorst J. et al.. S. Multi-locus analysis of genomic time series data from experimental evolution.
PLoS Genetics 11(4):e1005069, 2015
Ad

Recommended

PaulaTataruCSHL
PaulaTataruCSHL
Paula Tataru
Mathematical models of evolution
Mathematical models of evolution
Fernando Reche
write_thesis
write_thesis
Paula Tataru
Thiele
Thiele
Paula Tataru
PhDretreat2014
PhDretreat2014
Paula Tataru
PhDretreat2011
PhDretreat2011
Paula Tataru
PaulaTataru_PhD_defense
PaulaTataru_PhD_defense
Paula Tataru
part A
part A
Paula Tataru
birc-csd2012
birc-csd2012
Paula Tataru
TreeOfLife-jeopardy-2014
TreeOfLife-jeopardy-2014
Paula Tataru
AB-RNA-Mfold&SCFGs-2011
AB-RNA-Mfold&SCFGs-2011
Paula Tataru
AB-RNA-comparison-2011
AB-RNA-comparison-2011
Paula Tataru
AB-RNA-alignments-2011
AB-RNA-alignments-2011
Paula Tataru
AB-RNA-Nussinov-2011
AB-RNA-Nussinov-2011
Paula Tataru
AB-RNA-SCFGdesign=2010
AB-RNA-SCFGdesign=2010
Paula Tataru
AB-RNA-SCFG-2010
AB-RNA-SCFG-2010
Paula Tataru
AB-RNA-alignments-2010
AB-RNA-alignments-2010
Paula Tataru
AB-RNA-Nus-2010
AB-RNA-Nus-2010
Paula Tataru
PaulaTataruAarhus
PaulaTataruAarhus
Paula Tataru
mgsa_poster
mgsa_poster
Paula Tataru
PaulaTataruOxford
PaulaTataruOxford
Paula Tataru
PaulaTataru
PaulaTataru
Paula Tataru
Mols_August2013
Mols_August2013
Paula Tataru

More Related Content

More from Paula Tataru (15)

birc-csd2012
birc-csd2012
Paula Tataru
TreeOfLife-jeopardy-2014
TreeOfLife-jeopardy-2014
Paula Tataru
AB-RNA-Mfold&SCFGs-2011
AB-RNA-Mfold&SCFGs-2011
Paula Tataru
AB-RNA-comparison-2011
AB-RNA-comparison-2011
Paula Tataru
AB-RNA-alignments-2011
AB-RNA-alignments-2011
Paula Tataru
AB-RNA-Nussinov-2011
AB-RNA-Nussinov-2011
Paula Tataru
AB-RNA-SCFGdesign=2010
AB-RNA-SCFGdesign=2010
Paula Tataru
AB-RNA-SCFG-2010
AB-RNA-SCFG-2010
Paula Tataru
AB-RNA-alignments-2010
AB-RNA-alignments-2010
Paula Tataru
AB-RNA-Nus-2010
AB-RNA-Nus-2010
Paula Tataru
PaulaTataruAarhus
PaulaTataruAarhus
Paula Tataru
mgsa_poster
mgsa_poster
Paula Tataru
PaulaTataruOxford
PaulaTataruOxford
Paula Tataru
PaulaTataru
PaulaTataru
Paula Tataru
Mols_August2013
Mols_August2013
Paula Tataru
TreeOfLife-jeopardy-2014
TreeOfLife-jeopardy-2014
Paula Tataru
AB-RNA-Mfold&SCFGs-2011
AB-RNA-Mfold&SCFGs-2011
Paula Tataru
AB-RNA-comparison-2011
AB-RNA-comparison-2011
Paula Tataru
AB-RNA-alignments-2011
AB-RNA-alignments-2011
Paula Tataru
AB-RNA-Nussinov-2011
AB-RNA-Nussinov-2011
Paula Tataru
AB-RNA-SCFGdesign=2010
AB-RNA-SCFGdesign=2010
Paula Tataru
AB-RNA-SCFG-2010
AB-RNA-SCFG-2010
Paula Tataru
AB-RNA-alignments-2010
AB-RNA-alignments-2010
Paula Tataru
AB-RNA-Nus-2010
AB-RNA-Nus-2010
Paula Tataru
PaulaTataruAarhus
PaulaTataruAarhus
Paula Tataru
PaulaTataruOxford
PaulaTataruOxford
Paula Tataru
Mols_August2013
Mols_August2013
Paula Tataru

PaulaTataruVienna

  • 1. using an accurate beta approximation PAULA TATARU THOMAS BATAILLON ASGER HOBOLTH AARHUS UNIVERSITY Bioinformatics Research Centre Vienna, July 17th 2015 Inference under the Wright-Fisher model
  • 2. An accurate Beta approximationPaula Tataru paula@birc.au.dk Inference of population history from DNA data Divergence times (Variable) population size Migration / admixture Selection coefficients Inference problems
  • 3. An accurate Beta approximationPaula Tataru paula@birc.au.dk Inference of population history from DNA data Divergence times (Variable) population size Migration / admixture Selection coefficients Model Wrigth-Fisher Inference problems
  • 4. An accurate Beta approximationPaula Tataru paula@birc.au.dk Inference problems: populations divergence M. Gautier and R. Vitalis. Inferring population histories using genome-wide allele frequency data. Molecular biology and evolution, 30(3):654668, 2013 Kim Tree
  • 5. An accurate Beta approximationPaula Tataru paula@birc.au.dk Inference problems: populations admixture J. K. Pickrell and J. K. Pritchard. Inference of population splits and mixtures from genome-wide allele frequency data. PLOS Genetics, 8(11):e1002967, 2012 TreeMix
  • 6. An accurate Beta approximationPaula Tataru paula@birc.au.dk Inference problems: loci under selection Steinr端cken M. et al. S. A novel spectral method for inferring general selection from time series genetic data. The Annals of Applied Statistics 8(4):22032222, 2014 spectralHMM
  • 7. An accurate Beta approximationPaula Tataru paula@birc.au.dk Inference problems: loci under selection Terhorst J. et al.. S. Multi-locus analysis of genomic time series data from experimental evolution. PLoS Genetics 11(4):e1005069, 2015
  • 8. An accurate Beta approximationPaula Tataru paula@birc.au.dk Population genetics: the Wright-Fisher model individuals generations(time)
  • 9. An accurate Beta approximationPaula Tataru paula@birc.au.dk Population genetics: the Wright-Fisher model Evolution of allele frequency forward in time at a bi-allelic locus individuals generations(time) 3 2 3 3 4 5 5 allele count
  • 10. An accurate Beta approximationPaula Tataru paula@birc.au.dk Allele frequency distribution
  • 11. An accurate Beta approximationPaula Tataru paula@birc.au.dk Diffusion Moment-based Approximations to the Wright-Fisher
  • 12. An accurate Beta approximationPaula Tataru paula@birc.au.dk Diffusion Large population size Infinitesimal change Moment-based Approximations to the Wright-Fisher
  • 13. An accurate Beta approximationPaula Tataru paula@birc.au.dk Diffusion Large population size Infinitesimal change Moment-based Convenient distributions Normal distribution Beta distribution Approximations to the Wright-Fisher
  • 14. An accurate Beta approximationPaula Tataru paula@birc.au.dk Diffusion Large population size Infinitesimal change No closed solution Cumbersome to evaluate Moment-based Convenient distributions Normal distribution Beta distribution Approximations to the Wright-Fisher
  • 15. An accurate Beta approximationPaula Tataru paula@birc.au.dk Diffusion Large population size Infinitesimal change No closed solution Cumbersome to evaluate Moment-based Convenient distributions Normal distribution Beta distribution Closed analytical forms Fast to evaluate Approximations to the Wright-Fisher
  • 16. An accurate Beta approximationPaula Tataru paula@birc.au.dk Diffusion Large population size Infinitesimal change No closed solution Cumbersome to evaluate Moment-based Convenient distributions Normal distribution Beta distribution Closed analytical forms Fast to evaluate Problematic at boundaries Approximations to the Wright-Fisher
  • 17. An accurate Beta approximationPaula Tataru paula@birc.au.dk Normal distribution Support: real line Beta distribution Support: [0, 1] Behavior at the boundaries
  • 18. An accurate Beta approximationPaula Tataru paula@birc.au.dk Normal distribution Support: real line Truncation Incorrect variance Beta distribution Support: [0, 1] Behavior at the boundaries
  • 19. An accurate Beta approximationPaula Tataru paula@birc.au.dk Normal distribution Support: real line Truncation Incorrect variance Intermediary frequencies Beta distribution Support: [0, 1] Intermediary frequencies Behavior at the boundaries
  • 20. An accurate Beta approximationPaula Tataru paula@birc.au.dk The Beta with spikes Use of Wright-Fisher Scalable Use of moments Simple mathematical calculations Improve behavior at boundaries Preserve mean and variance
  • 21. An accurate Beta approximationPaula Tataru paula@birc.au.dk The Wright Fisher model Zt allele count Xt = Zt /2N Zt+1 follows a binomial distribution individuals generations(time) 3 2 3 3 4 5 5 allele count
  • 22. An accurate Beta approximationPaula Tataru paula@birc.au.dk The Wright Fisher model Zt allele count Xt = Zt /2N Zt+1 follows a binomial distribution individuals generations(time) 3 2 3 3 4 5 5 allele count
  • 23. An accurate Beta approximationPaula Tataru paula@birc.au.dk The Wright Fisher model Zt allele count Xt = Zt /2N Zt+1 follows a binomial distribution g encodes the evolutionary pressures individuals generations(time) 3 2 3 3 4 5 5 allele count
  • 24. An accurate Beta approximationPaula Tataru paula@birc.au.dk The Wright Fisher model: Drift only individuals generations(time) 3 2 3 3 4 5 5 allele count
  • 25. An accurate Beta approximationPaula Tataru paula@birc.au.dk The Wright Fisher model: Mutations individuals generations(time) 3 2 4 5 4 3 2 allele count u v
  • 26. An accurate Beta approximationPaula Tataru paula@birc.au.dk The Wright Fisher model: Mutations individuals generations(time) 3 2 4 5 4 3 2 allele count u v
  • 27. An accurate Beta approximationPaula Tataru paula@birc.au.dk The Wright Fisher model: Migration individuals generations(time) 3 2 3 5 4 2 3 allele count m1 m2
  • 28. An accurate Beta approximationPaula Tataru paula@birc.au.dk The Wright Fisher model: Migration individuals generations(time) 3 2 3 5 4 2 3 allele count m1 m2
  • 29. An accurate Beta approximationPaula Tataru paula@birc.au.dk The Wright Fisher model: Linear forces
  • 30. An accurate Beta approximationPaula Tataru paula@birc.au.dk The Wright Fisher model: Linear forces Mutations
  • 31. An accurate Beta approximationPaula Tataru paula@birc.au.dk The Wright Fisher model: Linear forces Mutations Migration
  • 32. An accurate Beta approximationPaula Tataru paula@birc.au.dk The Wright Fisher model: Linear forces Mutations Migration Mutations & Migration
  • 33. An accurate Beta approximationPaula Tataru paula@birc.au.dk The Wright Fisher model: Linear forces Mutations Migration Mutations & Migration
  • 34. An accurate Beta approximationPaula Tataru paula@birc.au.dk DAF: the density of Xt The Beta approximation: Main idea
  • 35. An accurate Beta approximationPaula Tataru paula@birc.au.dk DAF: the density of Xt Use recursive approach to calculate Mean and variance The Beta approximation: Main idea
  • 36. An accurate Beta approximationPaula Tataru paula@birc.au.dk The Beta approximation: Drift only
  • 37. An accurate Beta approximationPaula Tataru paula@birc.au.dk The Beta with spikes: Main idea DAF: the density of Xt
  • 38. An accurate Beta approximationPaula Tataru paula@birc.au.dk The Beta with spikes: Main idea DAF: the density of Xt Use recursive approach to calculate Loss and fixation probabilities
  • 39. An accurate Beta approximationPaula Tataru paula@birc.au.dk The Beta with spikes: Drift only
  • 40. An accurate Beta approximationPaula Tataru paula@birc.au.dk The Beta with spikes: Drift only
  • 41. An accurate Beta approximationPaula Tataru paula@birc.au.dk Numerical accuracy: Drift only Beta Beta with spikes
  • 42. An accurate Beta approximationPaula Tataru paula@birc.au.dk Simulated data 5000 independent SNPs 100 samples in each population 50 data sets (replicates) Inference of divergence times: Drift only
  • 43. An accurate Beta approximationPaula Tataru paula@birc.au.dk Simulated data 5000 independent SNPs 100 samples in each population 50 data sets (replicates) DAF is used for likelihood calculation Inference of divergence times: Drift only
  • 44. An accurate Beta approximationPaula Tataru paula@birc.au.dk Simulated data 5000 independent SNPs 100 samples in each population 50 data sets (replicates) DAF is used for likelihood calculation Likelihood is conditioned to polymorphism Inference of divergence times: Drift only
  • 45. An accurate Beta approximationPaula Tataru paula@birc.au.dk Simulated data 5000 independent SNPs 100 samples in each population 50 data sets (replicates) DAF is used for likelihood calculation Likelihood is conditioned to polymorphism Likelihood is numerically optimized Inference of divergence times: Drift only
  • 46. An accurate Beta approximationPaula Tataru paula@birc.au.dk Inference of divergence times: Drift only
  • 47. An accurate Beta approximationPaula Tataru paula@birc.au.dk Inference of divergence times: Drift only Exome sequencing: 42,063 autosomal syn SNPs 6 western 12 central 11 eastern Thomas Bataillon et al. Genome Biol Evol 2015; 7:1122-1132
  • 48. An accurate Beta approximationPaula Tataru paula@birc.au.dk Inference of divergence times: Drift only
  • 49. An accurate Beta approximationPaula Tataru paula@birc.au.dk Inference of divergence times: Drift only P. Tataru, T. Bataillon, A. Hobolth. Inference under a Wright-Fisher model using an accurate beta approximation. bioRxiv, 2015
  • 50. An accurate Beta approximationPaula Tataru paula@birc.au.dk Conclusions: beta with spikes An extension built on the beta approximation
  • 51. An accurate Beta approximationPaula Tataru paula@birc.au.dk Conclusions: beta with spikes An extension built on the beta approximation Improves the quality of the approximation
  • 52. An accurate Beta approximationPaula Tataru paula@birc.au.dk Conclusions: beta with spikes An extension built on the beta approximation Improves the quality of the approximation Simple mathematical formulation
  • 53. An accurate Beta approximationPaula Tataru paula@birc.au.dk Conclusions: beta with spikes An extension built on the beta approximation Improves the quality of the approximation Simple mathematical formulation Works under linear evolutionary forces
  • 54. An accurate Beta approximationPaula Tataru paula@birc.au.dk Conclusions: beta with spikes An extension built on the beta approximation Improves the quality of the approximation Simple mathematical formulation Works under linear evolutionary forces Comparable to state of the art methods for inference of divergence times
  • 55. An accurate Beta approximationPaula Tataru paula@birc.au.dk Conclusions: beta with spikes An extension built on the beta approximation Improves the quality of the approximation Simple mathematical formulation Works under linear evolutionary forces Comparable to state of the art methods for inference of divergence times Recursive formulation enables incorporation of variable population size
  • 56. An accurate Beta approximationPaula Tataru paula@birc.au.dk Future work Incorporate selection Non-linear evolutionary force
  • 57. An accurate Beta approximationPaula Tataru paula@birc.au.dk Future work Incorporate selection Non-linear evolutionary force Positive selection increases probability of fixation
  • 58. An accurate Beta approximationPaula Tataru paula@birc.au.dk Future work Incorporate selection Non-linear evolutionary force Positive selection increases probability of fixation Mean and variance are no longer available in closed form* * Terhorst J. et al.. S. Multi-locus analysis of genomic time series data from experimental evolution. PLoS Genetics 11(4):e1005069, 2015