The document discusses control as inference in Markov decision processes (MDPs) and partially observable MDPs (POMDPs). It introduces optimality variables that represent whether a state-action pair is optimal or not. It formulates the optimal action-value function Q* and optimal value function V* in terms of these optimality variables and the reward and transition distributions. Q* is defined as the log probability of a state-action pair being optimal, and V* is defined as the log probability of a state being optimal. Bellman equations are derived relating Q* and V* to the reward and next state value.
The document discusses distances between data and similarity measures in data analysis. It introduces the concept of distance between data as a quantitative measure of how different two data points are, with smaller distances indicating greater similarity. Distances are useful for tasks like clustering data, detecting anomalies, data recognition, and measuring approximation errors. The most common distance measure, Euclidean distance, is explained for vectors of any dimension using the concept of norm from geometry. Caution is advised when calculating distances between data with differing scales.
ERATO感謝祭 Season IV
【参考】Satoshi Hara and Takanori Maehara. Enumerate Lasso Solutions for Feature Selection. In Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI'17), pages 1985--1991, 2017.
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement LearningPreferred Networks
?
Introduction of Deep Reinforcement Learning, which was presented at domestic NLP conference.
言語処理学会第24回年次大会(NLP2018) での講演資料です。
http://www.anlp.jp/nlp2018/#tutorial
This document discusses methods for automated machine learning (AutoML) and optimization of hyperparameters. It focuses on accelerating the Nelder-Mead method for hyperparameter optimization using predictive parallel evaluation. Specifically, it proposes using a Gaussian process to model the objective function and perform predictive evaluations in parallel to reduce the number of actual function evaluations needed by the Nelder-Mead method. The results show this approach reduces evaluations by 49-63% compared to baseline methods.
The document discusses control as inference in Markov decision processes (MDPs) and partially observable MDPs (POMDPs). It introduces optimality variables that represent whether a state-action pair is optimal or not. It formulates the optimal action-value function Q* and optimal value function V* in terms of these optimality variables and the reward and transition distributions. Q* is defined as the log probability of a state-action pair being optimal, and V* is defined as the log probability of a state being optimal. Bellman equations are derived relating Q* and V* to the reward and next state value.
The document discusses distances between data and similarity measures in data analysis. It introduces the concept of distance between data as a quantitative measure of how different two data points are, with smaller distances indicating greater similarity. Distances are useful for tasks like clustering data, detecting anomalies, data recognition, and measuring approximation errors. The most common distance measure, Euclidean distance, is explained for vectors of any dimension using the concept of norm from geometry. Caution is advised when calculating distances between data with differing scales.
ERATO感謝祭 Season IV
【参考】Satoshi Hara and Takanori Maehara. Enumerate Lasso Solutions for Feature Selection. In Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI'17), pages 1985--1991, 2017.
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement LearningPreferred Networks
?
Introduction of Deep Reinforcement Learning, which was presented at domestic NLP conference.
言語処理学会第24回年次大会(NLP2018) での講演資料です。
http://www.anlp.jp/nlp2018/#tutorial
This document discusses methods for automated machine learning (AutoML) and optimization of hyperparameters. It focuses on accelerating the Nelder-Mead method for hyperparameter optimization using predictive parallel evaluation. Specifically, it proposes using a Gaussian process to model the objective function and perform predictive evaluations in parallel to reduce the number of actual function evaluations needed by the Nelder-Mead method. The results show this approach reduces evaluations by 49-63% compared to baseline methods.
This document discusses Mahout, an Apache project for machine learning algorithms like classification, clustering, and pattern mining. It describes using Mahout with Hadoop to build a Naive Bayes classifier on Wikipedia data to classify articles into categories like "game" and "sports". The process includes splitting Wikipedia XML, training the classifier on Hadoop, and testing it to generate a confusion matrix. Mahout can also integrate with other systems like HBase for real-time classification.