ºÝºÝߣ

ºÝºÝߣShare a Scribd company logo
Maximum Clock Frequency The clock frequency for a synchronous sequential circuit is limited by the timing parameters of its flip-flops and gates. This limit is called  the maximum clock frequency  for the circuit. The  minimum clock period  is the reciprocal of this frequency. Relevant timing parameters Gates:  Propagation delays: min t PLH , min t PHL , max t PLH , max t PHL Flip-Flops: Propagation delays: min t PLH , min t PHL , max t PLH , max t PHL Setup time: t su Hold time: t h
Example T W  ≥ max t PFF  + t su For the 7474, max t PLH  = 25ns, max t PHL  = 40ns, t su  = 20ns T W  ≥ max (max t PLH  + t su,  max t PHL  + t su) T W  ≥ max (25+20, 40+20) = 60
Example T W  ≥ max t PFF  + max t PINV  + t su
Example T W  ≥ max t PFF  + max t PMUX  + t su
Example Paths from Q1 to Q1: Paths from Q1 to Q2: Paths from Q2 to Q1: Paths from Q2 to Q2: None T W  ≥ max t PDFF  +t JKsu  = 20 +10 = 30 ns T W  ≥ max t PDFF  + max t AND  + t JKsu  = 20 + 12 + 10 = 42 ns T W  ≥ max t PJKFF  + t OR  + T Dsu  = 25 + 10 + 5 = 40 ns  T W  ≥ max t PJKFF  + max t AND  + t JKsu  = 25 + 12 + 10 = 47 ns TW ≥ 47 ns
Example T W  ≥ max t PFF  + max t PINV  + t su
Example T W  ≥ max t PFF  + max t PMUX  + t su
Example Paths from Q1 to Q1: Paths from Q1 to Q2: Paths from Q2 to Q1: Paths from Q2 to Q2: None T W  ≥ max t PDFF  +t JKsu  = 20 +10 = 30 ns T W  ≥ max t PDFF  + max t AND  + t JKsu  = 20 + 12 + 10 = 42 ns T W  ≥ max t PJKFF  + t OR  + T Dsu  = 25 + 10 + 5 = 40 ns  T W  ≥ max t PJKFF  + max t AND  + t JKsu  = 25 + 12 + 10 = 47 ns TW ≥ 47 ns

More Related Content

What's hot (20)

Pipelining approach
Pipelining approachPipelining approach
Pipelining approach
GopinathD17
Ìý
Metastability,MTBF,synchronizer & synchronizer failure
Metastability,MTBF,synchronizer & synchronizer failureMetastability,MTBF,synchronizer & synchronizer failure
Metastability,MTBF,synchronizer & synchronizer failure
prashant singh
Ìý
Topograhical synthesis
Topograhical synthesis   Topograhical synthesis
Topograhical synthesis
Deiptii Das
Ìý
design-compiler.pdf
design-compiler.pdfdesign-compiler.pdf
design-compiler.pdf
FrangoCamila
Ìý
To designing counters using verilog code
To designing counters using verilog codeTo designing counters using verilog code
To designing counters using verilog code
Bharti Airtel Ltd.
Ìý
Verilog HDL Training Course
Verilog HDL Training CourseVerilog HDL Training Course
Verilog HDL Training Course
Paul Laskowski
Ìý
Timing analysis
Timing analysisTiming analysis
Timing analysis
Kunal Doshi
Ìý
Implementing Useful Clock Skew Using Skew Groups
Implementing Useful Clock Skew Using Skew GroupsImplementing Useful Clock Skew Using Skew Groups
Implementing Useful Clock Skew Using Skew Groups
M Mei
Ìý
optimazation of standard cell layout
optimazation of standard cell layoutoptimazation of standard cell layout
optimazation of standard cell layout
E ER Yash nagaria
Ìý
12 static timing_analysis_3_clocked_design
12 static timing_analysis_3_clocked_design12 static timing_analysis_3_clocked_design
12 static timing_analysis_3_clocked_design
Usha Mehta
Ìý
13 static timing_analysis_4_set_up_and_hold_time_violation_remedy
13 static timing_analysis_4_set_up_and_hold_time_violation_remedy13 static timing_analysis_4_set_up_and_hold_time_violation_remedy
13 static timing_analysis_4_set_up_and_hold_time_violation_remedy
Usha Mehta
Ìý
Basics of Verilog.ppt
Basics of Verilog.pptBasics of Verilog.ppt
Basics of Verilog.ppt
CoEBMSITM
Ìý
Physical design-complete
Physical design-completePhysical design-complete
Physical design-complete
Murali Rai
Ìý
VLSI-Physical Design- Tool Terminalogy
VLSI-Physical Design- Tool TerminalogyVLSI-Physical Design- Tool Terminalogy
VLSI-Physical Design- Tool Terminalogy
Murali Rai
Ìý
Basic synthesis flow and commands in digital VLSI
Basic synthesis flow and commands in digital VLSIBasic synthesis flow and commands in digital VLSI
Basic synthesis flow and commands in digital VLSI
Surya Raj
Ìý
sta slide ref.pdf
sta slide ref.pdfsta slide ref.pdf
sta slide ref.pdf
quandao25
Ìý
VLSIM11.pptx
VLSIM11.pptxVLSIM11.pptx
VLSIM11.pptx
savithaj5
Ìý
Pd flow i
Pd flow iPd flow i
Pd flow i
Alok Kumar
Ìý
Verilog Lecture4 2014
Verilog Lecture4 2014Verilog Lecture4 2014
Verilog Lecture4 2014
Béo Tú
Ìý
SPEF format
SPEF formatSPEF format
SPEF format
VLSI SYSTEM Design
Ìý
Pipelining approach
Pipelining approachPipelining approach
Pipelining approach
GopinathD17
Ìý
Metastability,MTBF,synchronizer & synchronizer failure
Metastability,MTBF,synchronizer & synchronizer failureMetastability,MTBF,synchronizer & synchronizer failure
Metastability,MTBF,synchronizer & synchronizer failure
prashant singh
Ìý
Topograhical synthesis
Topograhical synthesis   Topograhical synthesis
Topograhical synthesis
Deiptii Das
Ìý
design-compiler.pdf
design-compiler.pdfdesign-compiler.pdf
design-compiler.pdf
FrangoCamila
Ìý
To designing counters using verilog code
To designing counters using verilog codeTo designing counters using verilog code
To designing counters using verilog code
Bharti Airtel Ltd.
Ìý
Verilog HDL Training Course
Verilog HDL Training CourseVerilog HDL Training Course
Verilog HDL Training Course
Paul Laskowski
Ìý
Timing analysis
Timing analysisTiming analysis
Timing analysis
Kunal Doshi
Ìý
Implementing Useful Clock Skew Using Skew Groups
Implementing Useful Clock Skew Using Skew GroupsImplementing Useful Clock Skew Using Skew Groups
Implementing Useful Clock Skew Using Skew Groups
M Mei
Ìý
optimazation of standard cell layout
optimazation of standard cell layoutoptimazation of standard cell layout
optimazation of standard cell layout
E ER Yash nagaria
Ìý
12 static timing_analysis_3_clocked_design
12 static timing_analysis_3_clocked_design12 static timing_analysis_3_clocked_design
12 static timing_analysis_3_clocked_design
Usha Mehta
Ìý
13 static timing_analysis_4_set_up_and_hold_time_violation_remedy
13 static timing_analysis_4_set_up_and_hold_time_violation_remedy13 static timing_analysis_4_set_up_and_hold_time_violation_remedy
13 static timing_analysis_4_set_up_and_hold_time_violation_remedy
Usha Mehta
Ìý
Basics of Verilog.ppt
Basics of Verilog.pptBasics of Verilog.ppt
Basics of Verilog.ppt
CoEBMSITM
Ìý
Physical design-complete
Physical design-completePhysical design-complete
Physical design-complete
Murali Rai
Ìý
VLSI-Physical Design- Tool Terminalogy
VLSI-Physical Design- Tool TerminalogyVLSI-Physical Design- Tool Terminalogy
VLSI-Physical Design- Tool Terminalogy
Murali Rai
Ìý
Basic synthesis flow and commands in digital VLSI
Basic synthesis flow and commands in digital VLSIBasic synthesis flow and commands in digital VLSI
Basic synthesis flow and commands in digital VLSI
Surya Raj
Ìý
sta slide ref.pdf
sta slide ref.pdfsta slide ref.pdf
sta slide ref.pdf
quandao25
Ìý
VLSIM11.pptx
VLSIM11.pptxVLSIM11.pptx
VLSIM11.pptx
savithaj5
Ìý
Pd flow i
Pd flow iPd flow i
Pd flow i
Alok Kumar
Ìý
Verilog Lecture4 2014
Verilog Lecture4 2014Verilog Lecture4 2014
Verilog Lecture4 2014
Béo Tú
Ìý

Viewers also liked (6)

Clock Skew 1
Clock Skew 1Clock Skew 1
Clock Skew 1
rchovatiya
Ìý
Metastability
MetastabilityMetastability
Metastability
Nallapati Anindra
Ìý
Metastability
MetastabilityMetastability
Metastability
rchovatiya
Ìý
Clock Skew 2
Clock Skew 2Clock Skew 2
Clock Skew 2
rchovatiya
Ìý
I2C
I2CI2C
I2C
rchovatiya
Ìý
Career Development Quotes
Career Development QuotesCareer Development Quotes
Career Development Quotes
Antoinette Oglethorpe
Ìý

Fmax Analysis

  • 1. Maximum Clock Frequency The clock frequency for a synchronous sequential circuit is limited by the timing parameters of its flip-flops and gates. This limit is called the maximum clock frequency for the circuit. The minimum clock period is the reciprocal of this frequency. Relevant timing parameters Gates: Propagation delays: min t PLH , min t PHL , max t PLH , max t PHL Flip-Flops: Propagation delays: min t PLH , min t PHL , max t PLH , max t PHL Setup time: t su Hold time: t h
  • 2. Example T W ≥ max t PFF + t su For the 7474, max t PLH = 25ns, max t PHL = 40ns, t su = 20ns T W ≥ max (max t PLH + t su, max t PHL + t su) T W ≥ max (25+20, 40+20) = 60
  • 3. Example T W ≥ max t PFF + max t PINV + t su
  • 4. Example T W ≥ max t PFF + max t PMUX + t su
  • 5. Example Paths from Q1 to Q1: Paths from Q1 to Q2: Paths from Q2 to Q1: Paths from Q2 to Q2: None T W ≥ max t PDFF +t JKsu = 20 +10 = 30 ns T W ≥ max t PDFF + max t AND + t JKsu = 20 + 12 + 10 = 42 ns T W ≥ max t PJKFF + t OR + T Dsu = 25 + 10 + 5 = 40 ns T W ≥ max t PJKFF + max t AND + t JKsu = 25 + 12 + 10 = 47 ns TW ≥ 47 ns
  • 6. Example T W ≥ max t PFF + max t PINV + t su
  • 7. Example T W ≥ max t PFF + max t PMUX + t su
  • 8. Example Paths from Q1 to Q1: Paths from Q1 to Q2: Paths from Q2 to Q1: Paths from Q2 to Q2: None T W ≥ max t PDFF +t JKsu = 20 +10 = 30 ns T W ≥ max t PDFF + max t AND + t JKsu = 20 + 12 + 10 = 42 ns T W ≥ max t PJKFF + t OR + T Dsu = 25 + 10 + 5 = 40 ns T W ≥ max t PJKFF + max t AND + t JKsu = 25 + 12 + 10 = 47 ns TW ≥ 47 ns