This document summarizes research and development work being done by Bee Technologies to develop new technologies using simulation. Specifically, it discusses R&D efforts for product innovation, new technologies, and solving problems. Key technologies used include circuit and device modeling as well as simulation. Example R&D processes are described for developing new theories for next generation hybrid electric vehicles. The R&D process involves circuit method and behavior of device method approaches using simulation to evaluate ideas and reach conclusions.
This document describes an equivalent circuit model called E_V_Cap that models an electric vehicle battery as a capacitor. E_V_Cap works as a capacitor that is charged or discharged by the battery current based on the capacitor voltage equation. The E_V_Cap function limits the initial battery capacity plus the integral of the battery current multiplied by the loss rate constant, divided by the battery capacity and time scale constant, to a range between -1 and 1.01.
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Tsuyoshi Horigome
?
This document provides an inventory update of 6,747 parts at Spice Park as of April 2024. It lists the part numbers, manufacturers, and quantities of various semiconductor components, including 1,697 Schottky rectifier diodes from 29 different manufacturers. It also includes details on passive components, batteries, mechanical parts, motors, and lamps in the inventory.
The document provides an inventory update from April 2024 of the Spice Park collection which contains 6,747 electronic components. It includes tables listing the types of semiconductor components, passive parts, batteries, mechanical parts, motors, and lamps in the collection along with their manufacturer and quantities. One of the semiconductor components, the general purpose rectifier diode, is broken down into a more detailed table with 116 entries providing part numbers, manufacturers, thermal ratings, and remarks.
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Tsuyoshi Horigome
?
The document provides an inventory update from March 2024 of parts in the Spice Park warehouse. It lists 6,725 total parts across various categories including semiconductors, passive parts, batteries, mechanical parts, motors, and lamps. The semiconductor section lists 652 general purpose rectifier diodes from 18 different manufacturers with quantities ranging from 2 to 145 pieces.
This document provides an inventory list of parts at Spice Park as of March 2024. It contains 3 sections - Semiconductor parts (diodes, transistors, ICs etc.), Passive parts (capacitors, resistors etc.), and Battery parts. For Semiconductor parts, it lists 36 different part types and provides the quantity of each part. It then provides further details of Diode/General Purpose Rectifiers, listing the manufacturer and quantity of 652 individual part numbers.
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Tsuyoshi Horigome
?
The document provides an inventory update from February 2024 of Spice Park, which contains 6,694 total pieces of electronic components and parts. It lists 36 categories of semiconductor devices, 11 categories of passive parts, 10 types of batteries, 5 mechanical parts, DC motors, lamps, and power supplies. It provides the most detailed listing for solar cells, with 1,003 total pieces from 51 manufacturers listed with part numbers.
The document provides an inventory update from February 2024 of Spice Park, which contains 6,694 electronic components. It lists the components by type (e.g. semiconductor), part number, manufacturer, thermal rating, and quantity on hand. For example, it shows that there are 621 general purpose rectifier diodes from manufacturers such as Fairchild, Fuji, Intersil, Rohm, Shindengen, and Toshiba. The detailed four-page section provides further information on the first item, general purpose rectifier diodes, including 152 individual part numbers and specifications.
This document discusses circuit simulations using LTspice. It describes driving a circuit simulation by inserting a 250 ohm resistor between the output terminals. It also describes simulating a 1 channel bridge circuit where the DUT1 and DUT2 resistors are both set to 100 ohms and the input voltage is set to either 1V or 5V.