Diagnosis Support by Machine Learning Using Posturography DataTeruKamogashira
?
Machine learning algorithms can help analyze posturography data to diagnose vestibular dysfunction. An evaluation of various algorithms found that gradient boosting had the best performance with an AUC of 0.90. While deep learning did not perform best, optimizing algorithm parameters is important. Larger, multi-institutional clinical datasets may improve machine learning's ability to accurately diagnose vestibular disorders from posturography data.
Responses from the trapezoid body in the Mongolian gerbilTeruKamogashira
?
The study recorded responses from 80 fibers in the trapezoid body of the Mongolian gerbil. 26 fibers responded best to sounds in the ipsilateral ear and 54 to the contralateral ear. Many onset responses were observed, which is unusual compared to other mammals like cats. Onset responses occurred over a similar depth as primary-like responses. This suggests more diversity in response types of neurons in the gerbil anteroventral cochlear nucleus than in cats.
Diagnosis Support by Machine Learning Using Posturography DataTeruKamogashira
?
Machine learning algorithms can help analyze posturography data to diagnose vestibular dysfunction. An evaluation of various algorithms found that gradient boosting had the best performance with an AUC of 0.90. While deep learning did not perform best, optimizing algorithm parameters is important. Larger, multi-institutional clinical datasets may improve machine learning's ability to accurately diagnose vestibular disorders from posturography data.
Responses from the trapezoid body in the Mongolian gerbilTeruKamogashira
?
The study recorded responses from 80 fibers in the trapezoid body of the Mongolian gerbil. 26 fibers responded best to sounds in the ipsilateral ear and 54 to the contralateral ear. Many onset responses were observed, which is unusual compared to other mammals like cats. Onset responses occurred over a similar depth as primary-like responses. This suggests more diversity in response types of neurons in the gerbil anteroventral cochlear nucleus than in cats.
1. 文献
邦訳の出ているもの、入手しやすいものを中心に挙げてある。
? Marr, D. : Vision -A Computational Investigation into the Human Representation and Processing of Visual Information. W.
H. Freeman and Company, New York, 1982(乾敏郎、安藤広志訳『ビジョンー視覚の計算理論と脳内表
現』産業図書, 1987)
? 隠喩としての建築 柄谷行人 講談社 1983
? —グレゴリー?ベイトソン 佐藤良明訳 精神と自然 生きた世界の認識論 新思策社 2001
? 切替一郎ほか: いわゆる後迷路性難聴の鑑別診断(その分類と提案). Audiology Japan, 8: 1, 1965
? 松崎力: 聴覚検査法の意義に関する1考察. 耳喉, 38: 33-36, 1966
? Seron, X. : La Neuropsychologie Cognitive (Collection Que sais-je?) n2754, P. U. F., 1993(須賀哲夫、久野雅樹
訳『認知神経心理学』白水社, 1995)
? Saussure, F. de, Cours de linguistique generale (小林英夫訳『一般言語学講義(改版 )』岩波書店、1972)
? 高橋哲哉:意味と構造 新岩波講座哲学16 哲学的諸問題の現在、岩波書店、1986、pp214-
246
? Merleau-Ponty, M.,Phenomenologie de la Perception, Paris, 1976(竹内芳郎訳『知覚の現象学1?2』みすず
書房 1980, 81)
? Kristeva, J.,(Joyaux, J.,) Le langage, cet inconnu, S.G.P.P., 1969(谷口勇訳『ことば、この未知なるものー記
号論への招待』国文社、1983)
? 丸山圭三郎:言語と世界の文節化、新岩波講座哲学2 経験 言語 認識、岩波書店 、
1985、pp35-64
? 聴覚情報処理とその異常. 神崎仁編 MEDICAL VIEW, 東京, pp177-185, 1996
? Fodor, J., A. : The Modality of Mind. The MIT Press, Cambridge, Massachusetts, 1983(伊藤しゃく康、信原幸弘
訳『精神のモジュール形式ー人工知能と心の哲学』産業図書, 1985)
? 田中美郷: 聴覚失認, 精神科 MOOK1. 失語?失行?失認 大橋博司編, 金原出版, pp92-103, 1982
? Knuden EI, Konishi M: A neural map of auditory space in the owl. Science. 200: 795-797, 1978.
? 音楽と認知 波多野誼余夫編 東京大学出版会 1987