Teknik Lagrangian dan Hamiltonian merupakan pengembangan dari hukum Newton yang memungkinkan penyelesaian masalah mekanika yang lebih rumit dengan menggunakan koordinat umum dan pendekatan energi. Kedua teknik tersebut menggunakan koordinat posisi dan momentum serta menghasilkan persamaan diferensial orde satu.
PENDAHULUAN
Mekanika merupakan cabang ilmu fisika yang berhubungan dengan benda, yaitu ilmu yang mempelajari gerak benda, baik benda yang diam (statis) maupun benda yang bergerak (kinematika dan dinamika). Kinematika merupakan ilmu fisika yang mempelajari gerak suatu benda tanpa memperhatikan penyebab gerak benda tersebut, sedangkam dinamika merupakan ilmu fisika yang mempelajari gerak suatu benda dengan memperhatikan atau memperhitungkan penyebab gerak benda tersebut. Masalah mekanika merupakan hal yang cukup penting dalam perkembangan ilmu fisika untuk kita pelajari karena masalah mekanika sangat erat kaitannya dengan peristiwa yang tejadi dalam kehidupan kita sehari-hari. Sebagaimana kita ketahui bahwa fisika merupakan ilmu yang mempelajari gejala alam yang dapat diamati dan diukur, dan kasus mekanika merupakan salah satu gejala alam yang dapat diamati dan diukur.
Dalam perkembangannya, mekanika dibagi dalam menjadi dua yaitu mekanika klasik dan mekanika kuantum. Mekanika klasik dititik beratkan pada benda-benda yang bergerak dengan kecepatan jauh dibawah kecepatan cahaya, sedangkan mekanika kuantum dititik beratkan pada benda-benda yang bergerak mendekati kecepatan cahaya.
MEKANIKA LAGRANGE
Mekanika Lagrange merupakan suatu metode penyelesaian persoalan mekanika yang tidak mudah diselesaikan dengan Mekanika Newton. Posisi sebuah partikel dalam l ruang dapat dinyatakan dengan menggunakan tiga jenis koordinat; dapat berupa koordinat kartesian, koordinat polar atau koordinat silinder. Dimisalkan jika suatu partikel bergerak dalam suatu bidang (memiliki derajat kebebasan 2 yaitu sumbu x dan y), dalam suatu ruang (memiliki derajat kebebasan 3 yaitu sumbu x, y, dan z). Jika sistem yang ditinjau mengandung N partikel, maka diperlukan paling kurang 3 N koordinat untuk menyatakan posisi semua partikel. Secara umum, terdapat n jumlah minimum koordinat yang diperlukan untuk menyatakan konfigurasi sistem. Koordinat-koordinat tersebut dinyatakan dengan:
q_1,q_2,,q_n
yang disebut dengan koordinat umum (generalized coordinates). Koordinat q_k dapat saja berupa sudut atau jarak. Tiap koordinat dapat berubah secara bebas terhadap lainnya (holonomic). Jumlah koordinat n dalam hal ini disebut dengan derajat kebebasan sistem tersebut.
Dalam sistem yang nonholonomic, masing-masing koordinat tidak dapat berubah secara bebas satu sama lain, yang berarti bahwa banyaknya derajat kebebasan adalah lebih kecil dari jumlah minimum koordinat yang diperlukan untuk menyatakan konfigurasi sistem. Salah satu contoh sistem nonholonomic adalah sebuah bola yang dibatasi meluncur pada sebuah bidang kasar. Lima koordinat diperlukan untuk menyatakan konfigurasi sistem, yakni dua koordinat untuk menyatakan posisi pusat bola dan tiga koordinat untuk menyatakan perputarannya. Dalam hal ini, koordinat-koordinat tersebut tidak dapat berubah semuanya secara bebas. Jika bola tersebut menggelinding, paling kurang dua koordinat mesti berubah. Dalam pembahasan selanjutnya
1. Dokumen tersebut membahas tentang metode Lagrange dalam memodelkan dinamika fluida, khususnya untuk kasus turbulensi. Metode Lagrange menggunakan pendekatan relativistik lagrangian bosonik untuk membangun persamaan Navier-Stokes yang menggambarkan dinamika fluida.
Artikel ini membahas perbandingan antara mekanika Newton dan mekanika Lagrange. Mekanika Lagrange merupakan pendekatan alternatif untuk menganalisis sistem mekanik dengan cara pandang yang holistik, berfokus pada energi kinetik dan potensial tanpa mempertimbangkan gaya secara langsung.
1. Fungsi Hamilton merupakan persamaan kanonik untuk gerak yang terdiri dari 2n persamaan diferensial orde-1 yang menggambarkan hubungan antara koordinat dan momentum suatu sistem.
2. Fungsi Hamilton dapat digunakan untuk menyelesaikan persamaan gerak osilator harmonik satu dimensi dan benda dalam medan sentral.
3. Persamaan Lagrange dapat diterapkan untuk menyelesaikan gerak zarah bermuatan dalam medan elektromagnetik
Metode lagrangean dalam pengembangan mekanika klasikdzakiamin02
油
Metode Lagrangean merupakan pengembangan mekanika klasik yang menggunakan konsep energi total (kinetik dan potensial) sebagai kuantitas fisisnya dalam menjelaskan gerak partikel, berbeda dengan pendekatan gaya pada mekanika Newtonian. Persamaan Lagrangean didefinisikan sebagai selisih antara energi kinetik dan potensial suatu sistem, dan dapat digunakan untuk memecahkan masalah kinematika gerak partikel.
Dokumen tersebut membahas sistem kendali dalam koordinat umum, termasuk posisi partikel, koordinat umum, derajat kebebasan, dan penurunan persamaan Lagrange. Secara khusus, dibahas cara menyatakan posisi partikel dalam sistem dengan koordinat umum, konsep sistem kendali, dan penggunaan koordinat kartesius dan koordinat umum untuk menyatakan gerak partikel tunggal dan sistem.
Dokumen ini menjelaskan Persamaan Schrodinger, yang merupakan persamaan penting untuk menjelaskan perilaku elektron. Persamaan ini dikembangkan dari konsep mekanika klasik dan mekanika kuantum, dan solusinya dapat menunjukkan sifat diskrit energi elektron. Pemisahan variabel digunakan untuk mendapatkan Persamaan Schrodinger bebas waktu.
Persamaan Schr旦dinger menjelaskan perilaku elektron dalam atom sebagai gelombang. Dokumen ini menjelaskan bagaimana fungsi Hamilton dapat digunakan untuk menggambarkan energi elektron dan mengembangkan operator momentum dan energi. Hal ini memungkinkan pengembangan persamaan Schr旦dinger satu dan tiga dimensi, baik yang bergantung waktu maupun bebas waktu.
Dokumen tersebut membahas model matematika dari suatu masalah fisika. Secara khusus membahas penurunan rumus gerak osilasi bebas dan dipengaruhi gaya luar dari sistem pegas bermassa. Rumus gerak tersebut berupa persamaan diferensial yang kemudian diselesaikan untuk beberapa kasus seperti tanpa redaman, dengan redaman kritis dan berlebihan, serta dipengaruhi gaya periodik.
Sistem massa pegas horisontal dapat digambarkan dengan hukum Hooke dan hukum Newton kedua. Solusi persamaannya berupa kombinasi fungsi sinus dan kosinus yang menunjukkan sifat getaran harmonik. Fungsi ini memiliki periode getaran yang sama dengan waktu yang dibutuhkan massa untuk menyelesaikan satu getaran lengkap.
Teks ini membahas persamaan Lagrange dan prosedur umum untuk mencari persamaan gerak suatu sistem. Persamaan Lagrange dirumuskan berdasarkan energi kinetik dan potensial tanpa mempertimbangkan gaya-gaya. Persamaan ini setara dengan hukum Newton jika menggunakan koordinat kartesius. Metode ini lebih mudah untuk partikel tunggal. Teks ini juga menjelaskan contoh penerapan persamaan Lagrange pada koordinat silinder untuk menent
Mekanika Kuantum FI 5003 mencakup review persamaan Schrodinger dan solusinya, teori gangguan, dinamika kuantum, aproksimasi WKB, operator dan aplikasinya, metoda variasional dan Hartree Fock, teori gangguan bergantung waktu, hamburan, partikel sejenis, dan koreksi relativistik. Kuliah dilakukan secara tatap muka dengan penugasan RBL yang dipresentasikan secara bertahap dan diujikan secara berkala."
composed by adnavi ulfa
pengertian mekanika newtonian, mekanika hamiltonian, mekanika langrangian
penurunan fungsi hamilton dan penurunan kekekalan energi
kasus kekekalan energi
fungsi hamilton dan aplikasi kasus
Ketiga hukum Kepler menjelaskan gerak planet di sekitar Matahari. Pertama, orbit planet berbentuk elips dengan Matahari di salah satu fokus. Kedua, garis yang menghubungkan planet dan Matahari menyapu luas yang sama dalam waktu yang sama. Ketiga, kuadrat periode planet berbanding lurus dengan kubik jari-jari orbitnya.
Dokumen tersebut membahas tentang transformasi Lorentz yang menjelaskan hubungan antara kerangka acuan yang bergerak relatif satu sama lain. Transformasi Lorentz menghasilkan kontraksi panjang dan perlambatan waktu dibandingkan kerangka acuan yang diam. Dokumen tersebut juga membandingkan transformasi Galileo dan Lorentz serta menjelaskan persamaan matematis yang mendefinisikan transformasi Lorentz.
The document summarizes key details about India's Mars Orbiter Mission (MOM), also known as Mangalyaan. It provides information about the mission objectives, spacecraft, launch date, orbital insertion date, and phases of the mission plan. MOM is a technology demonstrator project by ISRO to develop capabilities for designing, planning, managing, and operating an interplanetary mission. It carries scientific instruments to advance knowledge about Mars.
Dokumen tersebut membahas sistem kendali dalam koordinat umum, termasuk posisi partikel, koordinat umum, derajat kebebasan, dan penurunan persamaan Lagrange. Secara khusus, dibahas cara menyatakan posisi partikel dalam sistem dengan koordinat umum, konsep sistem kendali, dan penggunaan koordinat kartesius dan koordinat umum untuk menyatakan gerak partikel tunggal dan sistem.
Dokumen ini menjelaskan Persamaan Schrodinger, yang merupakan persamaan penting untuk menjelaskan perilaku elektron. Persamaan ini dikembangkan dari konsep mekanika klasik dan mekanika kuantum, dan solusinya dapat menunjukkan sifat diskrit energi elektron. Pemisahan variabel digunakan untuk mendapatkan Persamaan Schrodinger bebas waktu.
Persamaan Schr旦dinger menjelaskan perilaku elektron dalam atom sebagai gelombang. Dokumen ini menjelaskan bagaimana fungsi Hamilton dapat digunakan untuk menggambarkan energi elektron dan mengembangkan operator momentum dan energi. Hal ini memungkinkan pengembangan persamaan Schr旦dinger satu dan tiga dimensi, baik yang bergantung waktu maupun bebas waktu.
Dokumen tersebut membahas model matematika dari suatu masalah fisika. Secara khusus membahas penurunan rumus gerak osilasi bebas dan dipengaruhi gaya luar dari sistem pegas bermassa. Rumus gerak tersebut berupa persamaan diferensial yang kemudian diselesaikan untuk beberapa kasus seperti tanpa redaman, dengan redaman kritis dan berlebihan, serta dipengaruhi gaya periodik.
Sistem massa pegas horisontal dapat digambarkan dengan hukum Hooke dan hukum Newton kedua. Solusi persamaannya berupa kombinasi fungsi sinus dan kosinus yang menunjukkan sifat getaran harmonik. Fungsi ini memiliki periode getaran yang sama dengan waktu yang dibutuhkan massa untuk menyelesaikan satu getaran lengkap.
Teks ini membahas persamaan Lagrange dan prosedur umum untuk mencari persamaan gerak suatu sistem. Persamaan Lagrange dirumuskan berdasarkan energi kinetik dan potensial tanpa mempertimbangkan gaya-gaya. Persamaan ini setara dengan hukum Newton jika menggunakan koordinat kartesius. Metode ini lebih mudah untuk partikel tunggal. Teks ini juga menjelaskan contoh penerapan persamaan Lagrange pada koordinat silinder untuk menent
Mekanika Kuantum FI 5003 mencakup review persamaan Schrodinger dan solusinya, teori gangguan, dinamika kuantum, aproksimasi WKB, operator dan aplikasinya, metoda variasional dan Hartree Fock, teori gangguan bergantung waktu, hamburan, partikel sejenis, dan koreksi relativistik. Kuliah dilakukan secara tatap muka dengan penugasan RBL yang dipresentasikan secara bertahap dan diujikan secara berkala."
composed by adnavi ulfa
pengertian mekanika newtonian, mekanika hamiltonian, mekanika langrangian
penurunan fungsi hamilton dan penurunan kekekalan energi
kasus kekekalan energi
fungsi hamilton dan aplikasi kasus
Ketiga hukum Kepler menjelaskan gerak planet di sekitar Matahari. Pertama, orbit planet berbentuk elips dengan Matahari di salah satu fokus. Kedua, garis yang menghubungkan planet dan Matahari menyapu luas yang sama dalam waktu yang sama. Ketiga, kuadrat periode planet berbanding lurus dengan kubik jari-jari orbitnya.
Dokumen tersebut membahas tentang transformasi Lorentz yang menjelaskan hubungan antara kerangka acuan yang bergerak relatif satu sama lain. Transformasi Lorentz menghasilkan kontraksi panjang dan perlambatan waktu dibandingkan kerangka acuan yang diam. Dokumen tersebut juga membandingkan transformasi Galileo dan Lorentz serta menjelaskan persamaan matematis yang mendefinisikan transformasi Lorentz.
The document summarizes key details about India's Mars Orbiter Mission (MOM), also known as Mangalyaan. It provides information about the mission objectives, spacecraft, launch date, orbital insertion date, and phases of the mission plan. MOM is a technology demonstrator project by ISRO to develop capabilities for designing, planning, managing, and operating an interplanetary mission. It carries scientific instruments to advance knowledge about Mars.
This document provides information on number base conversions between decimal, binary, octal, and hexadecimal numbering systems. It explains the techniques for converting between these bases through examples, including determining the place value of each digit and using intermediate bases as needed. Common conversions covered are decimal to binary, binary to decimal, hexadecimal to binary, and vice versa.
This document contains information about a student named Jitin J Pillai enrolled in the Instrumentation and Control branch of Shantilal Shah Government Engineering College. It lists his name, roll number, enrollment number, branch of study, semester, and year of study. It also provides the postal address of the college.
This document discusses various applications of superconductivity. It describes how superconductors are used to create strong magnets for applications like MRI machines and particle accelerators. They allow for more efficient storage of magnetic energy and filtering of radio frequencies. Superconductors are also employed in maglev trains, quantum computing, and other electronic devices exploiting their quantum properties. Specific examples discussed include the large superconducting magnets on the AMS-02 particle detector and Japan's maglev train system.
Dokumen ini membahas tentang Mekanika Lagrangia dan Hamiltonia. Mekanika Lagrangia menggunakan persamaan umum dinamika yang dikembangkan oleh Lagrange untuk menyelesaikan masalah gerak benda, terutama untuk sistem dengan gaya tidak diketahui secara pasti. Mekanika Hamiltonia menggunakan prinsip Hamilton dan koordinat fase untuk menyelesaikan masalah yang sama. Contoh penerapan kedua pendekatan ini diberikan untuk gerak
pengertian mekanika newtonian, mekanika hamiltonian, mekanika langrangian
penurunan fungsi hamilton dan kekekalan energi
kekekalan energi dan kasus
fungi hamilton dan aplikasi kasus
Teks tersebut merangkum konsep-konsep dasar dinamika sistem partikel seperti kekekalan momentum linier, momentum sudut, dan energi pada sistem partikel. Konsep-konsep tersebut diterapkan pada beberapa contoh seperti roket dan sabuk konveyor.
1. Untuk merancang sistem kendali, sistem fisis harus dimodelkan secara matematis berdasarkan hukum-hukum fisis. Model matematis menggambarkan karakteristik dinamis sistem.
2. Ada dua pendekatan analisis sistem kendali: fungsi alih untuk sistem sederhana linear dan state space untuk sistem modern kompleks.
3. Pemodelan sistem elektrik didasarkan pada hukum Kirchhoff yang menghasilkan persamaan diferensial yang kemud
Teks tersebut membahas tentang getaran mekanik dan sistem derajat kebebasan tunggal. Secara singkat, teks tersebut menjelaskan bahwa getaran adalah gerak bolak-balik yang terjadi pada suatu interval waktu tertentu, dan ada dua jenis getaran yaitu getaran bebas dan getaran paksa. Selanjutnya teks tersebut menjelaskan tentang sistem derajat kebebasan tunggal yang hanya memiliki satu koordinat perpindahan
Dokumen tersebut membahas tentang percobaan ayunan matematis untuk menentukan besar percepatan gravitasi. Secara singkat, dokumen menjelaskan tentang tujuan percobaan, alat dan bahan yang digunakan, dasar teori ayunan matematis dan rumus untuk menghitung percepatan gravitasi berdasarkan panjang tali dan periode ayunan.
Rumus-rumus untuk IPhO berisi rumus-rumus matematika, fisika, dan rekomendasi umum untuk Olimpiade Fisika Internasional, termasuk derivasi, integral, dinamika, getaran, dan gelombang.
Teks tersebut membahas teori kinetika gas dan asumsi dasarnya, termasuk model molekuler untuk gas ideal, fluks molekular, persamaan gas ideal, dan prinsip equipartisi energi.
Danantara: Pesimis atau Optimis? Podcast Ikatan Alumni Lemhannas RI IKAL Lem...Dadang Solihin
油
Keberadaan Danantara: Pesimis atau Optimis?
Pendekatan terbaik adalah realistis dengan kecenderungan optimis.
Jika Danantara memiliki perencanaan yang matang, dukungan kebijakan yang kuat, dan mampu beradaptasi dengan tantangan yang ada, maka peluang keberhasilannya besar.
Namun, jika implementasinya tidak disertai dengan strategi mitigasi risiko yang baik, maka pesimisme terhadap dampaknya juga cukup beralasan.
Pada akhirnya, kunci suksesnya adalah bagaimana Danantara bisa dikelola secara efektif, inklusif, dan berkelanjutan, sehingga dampak positifnya lebih dominan dibandingkan risikonya.
MODUL AJAR SENI MUSIK KELAS VIII " ALAT MUSIK TRADISIONAL"MUMUL CHAN
油
Semoga Modul Ajar Seni Musik Kelas VIII ini bisa menjadi referensi untuk kalian dan bermanfaat untuk bersama. Aamiin...
Salam Manis
Widya Mukti Mulyani
Analisis Subjek Literatur Pada Disertasi Kajian Budaya dan Media (KBM) Sekola...Murad Maulana
油
PPT ini dipresentasikan dalam acara Lokakarya Nasional (Loknas) 2016 PDII LIPI dengan tema tema Pengelolaan Data, Informasi, dan Pengetahuan untuk Mendukung Pembangunan Repositori Nasional Indonesia, tanggal 10 11 Agustus 2016
PPT ini dipresentasikan dalam acara Seminar dan油Knowledge Sharing Kepustakawanan yang diselenggarakan oleh Forum Perpusdokinfo LPNK Ristek. Tanggal 28 November 2017
1. MEKANIKA LAGRANGIAN
Pada bab ini yaitu tentang mekanika lagrangian , hukum dasar yang dipakai
adalah hukum newton untuk menganalisis gerak pada sebuah benda. Dengan hukum
ini dapat menurunkan persamaan benda. Digunakan hukum ini jika, gaya yang
bekerja pada sebuah benda diketahui . namun pada kenyataannya pada banyak kasus,
terkadang tidak mudah diselesaikan dengan menggunakan dinamika gerak dan
persyaratan awal tersebut. Contohnya, benda bergerak pada pada permukaan
berbentuk bola. Pada persoalan yang dihadapi bukan hanya pada bentuk gaya bekerja,
tetapi juga pada koordinatnya, baik kartesian maupun koordinat yang lain, hal ini
tidak relevan lagidigunakan, sekalipun persamaan gayanya diketahui.
PERSAMAAN LAGRANGE
Untuk mencari persamaan diferensial gerak sebuah benda dinyatakan dalam
korninat rampatan, dapat digunakan persamaan hukum Newton II
iii xmF (21)
dan selanjutnya kita akan mencoba menyatakan persamaan tersebut dalam q.
Pendekatan pertama yang akan kita pakai adalah dari persamaan energi. Kita akan
menghitung energi kinetik T dalam bentuk koordinat Kartesian dan selanjutnya kita
akan nyatakan dalam koordinat rampatan dan turunannya terhadap waktu. Energi
kinetik T dari sebuah sistem yang mengandung N partikel dapat dinyatakan dengan
ワ
k
1i
2
i
2
i
2
1i2
1
zyxmT ( (22)
atau dalam bentuk yang lebih ringkas ditulis sebagai berikut
2. ワ
N3
1i
2
ii2
1
xmT (23)
Hal tersebut , menyatakan hubungan antara kordinat x dan q yang juga mengandung
waktu t secara eksplisit, dapat dimisalkan
),,...,,( tqqqxx n21ii (24)
selanjutnya
t
x
q
q
x
x i
k
k
i
i
(25)
Dalam pembahasan selanjutnya, kita tetapkan bahwa harga i adalah 1,2,
..3N dimana N menyatakan jumlah partikel dalam sistem, dan harga k adalah 1,2, .
.n; dimana n menyatakan jumlah koordinat rampatan (derajat kebebasan) sistem.
Oleh karena itu dapat dilihat bahwa energi kinetik sebagai fungsi koordinat rampatan,
turunannya terhadap waktu, atau mungkin dalam waktu. Dalam banyak hal, waktu t
tidak secara eksplisit terkait hubungan antara xi dan qk, sehingga xi/t = 0. Telah
jelas bahwa energi kinetik T merupakan fungsi kuadrat yang homogen dari kecepatan
rampatan kq .
Dari persamaan
k
i
k
i
q
x
q
x
(26)
3. Pada ruas kanan dan kiri dapat dikalikan dengan dengan ix , dan dideferensialkan
terhadap t, dan akan diperoleh :
件
э
緒件
э
k
i
i
k
i
i
q
x
x
dt
d
q
x
x
dt
d
k
i
i
k
i
i
q
x
x
q
x
x
(27)
atau
緒
2
x
qq
x
x
2
x
qdt
d 2
i
kk
i
i
2
i
k
(28)
Selanjutnya dikalikan dengan mi dan digunakan hubungan iii Fxm 緒 , sehingga
dapat diperoleh
緒
2
xm
qq
x
F
2
xm
qdt
d 2
ii
kk
i
i
2
ii
k
(29)
Dilakukan penjumlahan terhadap i , maka akan diperoleh
件
э
i kk
i
i
k q
T
q
x
F
q
T
dt
d
(30)
Dari definisi gaya rampatan diperoleh
4. k
k
k q
T
Q
q
T
dt
d
(31)
Persamaan tersebut adalah persamaan diferensial gerak yang dinyatakan dalam
koordinat rampatan dan dikenal dengan persamaan Lagrange untuk gerak.
Dalam kasus gerakannya adalah konservatif, persamaan Lagrange dapat
ditulis sebagai berikut:
kkk q
V
q
T
q
T
dt
d
(32)
Persamaan ini biasanya ditulis dalam bentuk yang lebih singkat dengan
mendefinisikan fungsi Lagrangian L yakni
L = T - V (33)
Yang berarti bahwa kita dapat menyatakaan T dan V dalam koordinat rampatan. Oleh
karena V = V(qk) dan 0qV k 緒駈 / , kita peroleh
kk q
T
q
L
dan
kkk q
V
q
T
q
L
(34)
Persamaan Lagrange dapat ditulis
kk q
L
q
L
dt
d
(35)
5. CONTOH PEMAKAIAN PERSAMAAN LAGRANGE
Berikut ini akan dibahas fungsi dari persamaan Lagrange untuk
menyelesaikan masalah-masalah gerak. Prosedur umum yang dipakai untuk mencari
persamaan diferensial gerak dari sebuah sistem adalah sebagai berikut:
1. Pilih sebuah kumpulan koordinat untuk menyatakan konfigurasi sistem.
2. Cari energi kinetik T sebagai fungsi koordinat tersebut beserta turunannya
terhadap waktu.
3. Jika sistem tersebut konservatif, cari energi potensial V sebagai fungsi
koordinatnya, atau jika sistem tersebut tidak konservatif, cari koordinat rampatan
Qk.
4. Persamaan deferensial gerak selanjutnya dapat dicari dengan menggunakan
persamaan di atas.
Berikut adalah contoh penggunaan dari persamaan Lagrange :
Osilator Harmonik
Pandanglah sebuah osilator harmonik 1-dimensi, dan misalkan padanya bekerja
sebuah gaya peredam yang besarnya sebanding dengan kecepatan. Oleh karena itu
sistem dapat dipandang tidak konservatif. Jika x menyatakan pergeseran
koordinat, maka fungsi Lagrangiannya adalah
L = T - V = 2
2
12
2
1
kxxm (38)
dimana m adalah massa dan k adalah tetapan kelenturan pegas. Selanjutnya:
xm
x
L
dan kx
x
L
(39)
6. Oleh karena pada sistem bekerja gaya yang tidak konservatif yang harganya
sebanding dengan kecepatan; dalam hal ini Q' = -c x , sehingga persamaan gerak
dapat ditulis :
)( kxxcxm
dt
d
(40)
mx cx kx 0
Ini tak lain adalah persamaan gerak osilator harmonik satu dimensi dengan gaya
peredam yang sudah kita kenal.